Network science / Graph mining Metrics for analyzing a connected world

Erwan Le Merrer¹

¹Inria, Rennes

ESIR 2022

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- 4 Exploring graphs
- Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- 4 Exploring graphs
- **5** Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

Graphs?

Figure: A graph: entities (nodes/vertices) and connections (edges)

An abstraction/representation for reasoning about characteristics of

- physical networks (computers, roads, circuits).
- relational data.

Focus on the structure rather than on the details of modeled objects

The omnipresence of graphs in applications

Figure: The Internet AS graph

The omnipresence of graphs in applications

Figure: Interconnecting system-on-chips in a datacenter rack

The omnipresence of graphs in applications

• exemple use in social nets, epidemics...

Figure 3.8: Four different views of a Facebook user's network neighborhood, showing the structure of links coresponding respectively to all declared friendships, maintained relationships, one-way communication, and reciprocal (i.e. mutual) communication. (Image from [286].)

Figure: From Networks, Crowds, and Markets: Reasoning about a Highly Connected World . By David Easley and Jon Kleinberg. Cambridge University Press, 2010.

e.g.: recommendations on YouTube

Figure: Recommandations: contextual, personalized?

e.g.: recommendations on YouTube

4-hops graphs from a YouTube video, new user (left) and returning user (r

Figure: Blank profile vs. my recommandations

Core notions (1)

- Directed and undirected graphs:
 - in directed graphs, edges have orientation (arrow end)

 A subgraph of G: formed by a subset of nodes/vertices and edges from G.

Core notions (2)

- Edge weight: value assigned as a label to an edge.
 - e.g., distance in km of a road from city 1 to 2.

- Graph connectivity:
 - A graph is connected if there is a path btw any pair of vertices.
 - Otherwise, *connected components* are the subgraphs in which paths exist.

Core notions (3)

- A cycle: a path in which a vertex is reachable from itself.
 - Example of an acyclic connected graph: a tree

• A *planar* graph: can be draw without any edges crossing each other.

Special topologies

Figure: Graphs to remember, often used as illustrations

Adjacency list or edge list representations

Graph G(V, E), with V: nodes and E: edges. Edge list:

[0,1], [0,6], [0,8], [1,4], [1,6], [1,9], [2,4], [2,6], [3,4], [3,5], [3,8], [4,5], [4,9], [7,8], [7,9]

O(|V|) access time to find an edge, but O(|E|) space in memory. Adjacency list:

[[1, 6, 8], [0, 4, 6, 9], [4, 6], [4, 5, 8], [1, 2, 3, 5, 9], [3, 4], [0, 1, 2], [8, 9], [0, 3, 7], [1, 4, 7]]

O(1) access time to vertex, but O(|V|) to access a given edge.¹

https://www.khanacademy.org/computing/computer-

Matrix representation

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	0	0	1	0	1	0
1	1	0	0	0	1	0	1	0	0	1
2	0	0	0	0	1	0	1	0	0	0
3	0	0	0	0	1	1	0	0	1	0
4	0	1	1	1	0	1	0	0	0	1
5	0	0	0	1	1	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	1
8	1	0	0	1	0	0	0	1	0	0
9	0	1	0	0	1	0	0	1	0	0

Figure: Matrix representation of previous graph

Find edge presence in O(1) time, but $\Theta(V^2)$ space in memory. 1's to be replaced by edge weights for weighted graphs.

Example tool families for manipulating graphs

Figure: For massive graphs (cannot fit into on server's memory)

X — Stream

Figure: Big graph processing on a single machine

Figure: For a database-like handling of graphs

NetworkX

Figure: Prototyping in Python, lots of contributions

Outline

- Graphs and representations
- 2 Classical metrics
- Modeling and generating graphs
- 4 Exploring graphs
- Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

Basic notations

- G(V, E): graph G with node set V, connected by edge set E.
 - $V = \{1,2,3,4,5,6\};$ E = [[1,5],[1,2],[2,3],[2,5],[3,4],[4,5],[4,6]]
- Number of nodes is n = |V|, edges is m = |E|.
- Neighbors of node i are set $\Gamma(i)$.
 - $\Gamma(1) = \{2, 5\}$

Degree of a node

- The degree d_v of node v is equal to $|\Gamma(v)|$ (its number of neighbors).
- Degree span: $0 \le d_v \le n-1$ (if no self loops).
- Degree distribution P(d) is the probability distribution of each degree in the current graph:

Figure: Degree distribution: x-axis is degree, y-axis is probability

In(out)-degree of v: counts incoming(outgoing) edges only.

Clustering coefficient

- Every two nodes in a *clique* are neighbors.
- Local clustering coefficient of a node i measures "how close are $\Gamma(i)$ from being a clique":

$$C_i = \frac{2|e_{jk}: v_j, v_k \in \Gamma(v_i), e_{jk} \in E|}{d_i(d_i - 1)}$$

Average clustering coefficient:

$$\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i$$

$$c = 1$$

$$c = 1/3$$

$$c = 0$$

Path lengths

- Path: sequence of adjacent nodes connecting two nodes (if exists).
 - e.g., two paths btw 6 and 1: (4,5,1) and (4,3,2,5,1).
 - One hop: one transition from a node to another.

- Distance dist(6,1) = |(4,5,1)| = 3
- Single-source shortest path (SSSP): shortest paths from node i to all other nodes (V\i).
- All-pairs shortest paths (APSP): SSSP from $\forall i \in V$.

Diameter

- Average path length: average of all-pair shortest distances in the graph.
- *Diameter*: longest path of the APSP, i.e., greatest distance between any pair of vertices.
 - diam(G) = |(4,5,1)| = 3, starting at node 6.

Spectral analysis

The Laplacian matrix $L_G = D - A$:

- D is the degree matrix a diagonal-matrix with D(i,i) is the degree of the ith node in G
- A is the adjacency matrix, with A(i,j) = 1 if and only if $(i,j) \in E$

$$L_G(i,j) = egin{cases} deg(i) & \textit{if } i = j \ -1 & \textit{if } (i,j) \in E \equiv 1 \ 0 & \textit{otherwise} \end{cases}$$

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix			
6 4 5 1	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \end{pmatrix}$			
0	(0 0 0 0 0 1)	0 0 0 1 0 0	0 0 0 -1 0 1			

Spectral analysis (2)

For an (undirected) graph G and its **Laplacian matrix** L = D - A with eigenvalues $\lambda_0 \le \lambda_1 \le ... \le \lambda_{n-1}$:

- $\lambda_0=0$, as $v_0=(1,1,...,1)$ satisfies $Lv_0=0$ (row sum and column sum of L are 0)
- # of connected components in G is the algebraic multiplicity of the 0 eigenvalue ($\Longrightarrow \lambda_2 = 0$ iff G is disconnected)
- the smallest non-zero eigenvalue of L is called the spectral gap
- the second smallest eigenvalue of L (could be zero) is the algebraic connectivity of G
- ...

Spectral analysis (3)

An example of a result: the diameter of a non complete graph G satisfies:

$$diam(G) \leq \lceil \frac{\log(vol(G)/\delta)}{\log \frac{\lambda_{n-1}+\lambda_1}{\lambda_{n-1}-\lambda_1}} \rceil,$$

with δ the minimum degree of G and vol(G) is the sum of the degrees of the vertices in G.

...and multiple results from graph theory, in general or for specific graphs

Conductance

• The conductance $\Phi(C)$ of a set C of vertices in a given graph G is the ratio between the number of edges going out from C and the number of edges inside C:

$$\Phi(C) = \frac{|cut(C)|}{vol(C)},$$

where vol(C) is the sum of the degrees of the vertices in C.

Expansion

 Expansion of G: mean number of nodes that are reached in h hops from all nodes:

$$e_G(h) = \frac{1}{n^2} \sum_{v \in V} |C_v(h)|,$$

with $C_v(h)$ the set of reachable nodes from v in h hops.

(a) Pure exponential growth produces a small world

(b) Triadic closure reduces the growth rate

Resilience

• Measures the robustness of a graph:

$$r_G(h) = \frac{1}{|E|} \sum_{v \in V} I(v, |C_v(h)|),$$

with $I(v, |C_v(h)|)$ the number of edges that need to be removed to split $C_v(h)$ into 2 sets (of roughly the same size). h: distance (hops).

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- 4 Exploring graphs
- Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

The Erdős-Rényi random graph

- Model G(n,p) for generating a canonical random graph.
 - Create *n* nodes.
 - ullet Every pair of nodes connected with independant probability p.

Figure: A random graph with p = 0.01.

- If np = 1, G almost surely has a largest component of $n = O(n^{2/3})$.
- $p = \frac{\ln n}{n}$ is a threshold for G's connectivity.
- For a large n, resulting degree distribution is Poisson.

The configuration model

- Arbitrary degree distribution: to choose
 - Create n nodes with each a given target degree, fitting the distribution
 - Loop: take one node with remaining "free" neighbor, and selected another node randomly to add an edge

The Watts-Strogatz graph

- Graphs with high clustering (like regular graphs), and low path lengths (like a random graph).
 - Create a ring lattice of *n* nodes.
 - Replace every edge by a random edge, with probability p.

Figure 3.2: WS graphs with n = 20, k = 4, and p = 0 (left), p = 0.2 (middle), and p = 1 (right).

The Barabási-Albert scale-free graph

- Model to generate a graph with power-law degree-distribution.
 - Create m_0 nodes, as a connected graph.
 - Iteratively add one node, and connect it to $m < m_0$ nodes, with probability depending on the degree of existing nodes: $p_i = \frac{d_i}{\sum_j d_j}$ (method called preferential attachment).

Figure: A Barabási-Albert graph with n = 50 and $m_0 = 1$.

- Well connected nodes "accumulate" incoming links: rich gets richer
- Resulting degree distribution is $P(d) \sim d^{-3}$.
- Average path length is $\frac{\ln n}{\ln \ln n}$.

A real structure example

Figure: Bow-tie structure of the web

Generating graphs with neural nets: GraphGen (1)

• How to generate graphs from an unknown generative process?

Generating graphs with neural nets: GraphGen (2)

- ullet Instances of graphs in a categorie o learn o generate others [8]
- Converting a graph to a sequence

(a) Graph (b) DFS traversal on the graph (c) DFS traversal on the graph

Figure: Extracting DFS "codes" from a graph to learn from.

• 5-tuples $(t_u, t_v, L_u, L_{(u,v)}, L_v)$, with L the label. Fig (b): (0,1,X,a,X), (1,2,X,a,Z), (2,0,Z,b,X), (1,3,X,b,Y).

Generating graphs with neural nets: GraphGen (3)

- A recurrent neural network (RNN) learns a DFS sequence S $p(S) = \prod_{i=1}^{m+1} p(s_i|s_1,...,s_{i-1})$ (i.e., conditional distribution over the elements.)
- Generation from m=1 to m=|E|, one single edge at a time

Figure 3: Architecture of GraphGen. Red arrows indicate data flow in the RNN whose hidden state h_i captures the state of the graph generated so far. Blue arrows show the information flow to generate the new edge tuple s_i .

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- 4 Exploring graphs
- Importance metrics
- Community metrics
- Comparing graphs
- TVGs: time varying graphs

Depth first search

 Graph exploration, from a given start node, depth first:

```
def dfs(graph, start):
   visited, stack = set(), [start]
   while stack:
       vertex = stack.pop()
       if vertex not in visited:
           visited.add(vertex)
           stack.extend(graph[vertex] - visited)
   return visited
```

Breadth first search

• breadth first:

```
def bfs(graph, start):
  visited, queue = set(), [start]
  while queue:
    vertex = queue.pop(0)
    if vertex not in visited:
       visited.add(vertex)
       queue.extend(graph[vertex] - visited)
return visited
```

Queue → search in vertices breadth (FIFO)

Eulerian path

- An Eulerian path visits every edge exactly once (allowing for revisiting vertices).
- Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has even degree.

Random walk

- Randomized exploration.
- Given a graph and a start node, a simple random walk [1] proceeds by random steps:
 - selects uniformly at random a neighbor from walk position
 - jump on it
 - loop process

Figure: Random walk on a grid (i.e., 4 neighbors per node)

Random walks - app1: sampling (biased)

- Select a random node in the graph (but biased).
- Given a graph, a start node, and a "large" h use a simple random walk:
 - selects uniformly a neighbor; jump on it; $h \leftarrow h-1$
 - loop until $h \le 0$
- Results in probability of node j to be selected: $P_j = \frac{d_j}{\sum_{i=0}^n d_i}$

Random walks - app1: sampling (uniform)

- Select a random node in the graph uniformly (Metropolis-Hastings method).
- Same as for biased except that, from current node i:
 - ullet generate $ho \sim U(0,1)$
 - selects uniformly a neighbor j; jump on it if $p \leq \min\{1, \frac{d_i}{d_j}\}$, else stay on i
- Results in probability of node j to be selected: $P_j = \frac{1}{\sum_{i=0}^n d_i}$

Random walks - app2: counting

- Distributed computation of n; based on the birthday paradox
 [6].
 - Sample uniformly nodes: $X_{t+1} \leftarrow X_t \cup j$
 - Stop when "collision" after l samples, i.e., when a node j appears twice in X_t
 - $\hat{n} = \sqrt{I^2/2}$

Random walks - app3: sybil detection

- "Early-terminated random walk starting from a non-Sybil node in a social network has a higher degree-normalized (divided by the degree) landing probability to land at a non-Sybil node than a Sybil node". [7]
 - observation holds because the limited number of attack edges forms a narrow passage from the non-Sybil region to the Sybil region in a social network.

Spanner

- \bullet A spanner H of a graph G: subgraph of G with few edges and short distances.² Tradeoff between number of edges and distance stretch.
- (α, β) -spanner of $G \iff \forall (u, v)$: $dist_H((u,v)) \leq \alpha \times dist_G((u,v)) + \beta$, with α : multiplicative stretch, β : additive stretch.

$$\begin{array}{lll} H := & \{\} \\ \text{For each edge } (u,v) & \text{in E do} \\ \text{If dist} & H \left((u,v) \right) > 2k-1 \text{ do} \\ & \text{add } \left(u,v \right) \text{ to } H \end{array}$$

- H is a (2k-1,0)-spanner of
- $|V_H| < n_G^{1+1/k}$.

Compute a subgraph H spanning G

Epidemics on graphs (1)

Epidemic on graph nodes: models with states Susceptible, Infected, Recovered, Exposed.[9]

- SIS-like: $\lambda = \beta/\mu$
- Order parameter ρ : transition point λ_c , s.t. for $\lambda > \lambda_c \rightarrow$ $\rho > 0$, while for $\lambda < \rightarrow \rho = 0$

Epidemics on graphs (2)

Application to marketing: which initial node for best spread?

Fig. 1. Example of a social network. Black node denotes the globally central node; chequered nodes denote the potential market; hatched node denotes the node central w.r.t. the potential market.

Figure: cf "A targeted approach to viral marketing"

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- Exploring graphs
- Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

Measuring the importance of individual nodes

- Importance has to be defined precisely, generally based on the application using the extracted importance metrics.
- Here, centrality metrics target individual importance, with regards to the rest of nodes in the graph.

Figure: Various importance results

Degree centrality

An important node is a node that has many neighbors

$$C_d(i) = \frac{d(i)}{n-1}$$

Pagerank basic computation

- assign all nodes the same initial PageRank: 1/n
- perform k updates of the PR values, as follows:
 - Each node divides its current PR equally across its out-going links, and passes these equal shares to the nodes it points to. Nodes update PRs to be the sum of the shares they receive.

$$PR(i) = \sum_{j \in \Gamma(i)} \frac{PR(j)}{|\Gamma_{out}(j)|}$$

Closeness centrality

An important node is *close* from all other nodes in the graph

$$C_c(i) = \frac{1}{\sum_{i \in V} d(i,j)}$$

Eccentricity

An important node is not eccentered

$$C_e(i) = \frac{1}{\max_{j \in V} dist(i,j)}$$

Betweeness centrality

An important node is a node that lies on many shortest paths

$$C_b(i) = \sum_{j \neq k \neq i} \frac{\sigma_{jk}(i)}{\sigma_{jk}},$$

where $\sigma_{jk}(i)$ the number of s.p. from j to k passing through i

Random walk betweeness centrality

Vertices A and B have high (shortest-path) betweenness in this configuration, while vertex C does not.

An important node is a node that is on many potential paths $\forall j,k\in V$, j sends a random walk (r.w.) that stops on k; each node i on the r.w. path earns a point

Second Order centrality

Vertices A and B have high (shortest-path) betweenness in this configuration, while vertex C does not.

An important node see regularly random data flows

- Let an unbiased random walk running on the graph
- Each node records return time of the walk in Ξ_i
- After N visits on a node i, its standart deviation is:

$$C_{\sigma_i}(N) = \sqrt{\frac{1}{N-1}\sum_{k=1}^N \Xi_i(k)^2 - [\frac{1}{N-1}\sum_{k=1}^N \Xi_i(k)]^2},$$

Important nodes have a low standart deviation of those return times

Removal impact on path lengths

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- Exploring graphs
- Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

Detecting communities in graphs

Triadic closure

 "If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends themselves at some point in the future".

• $\{G, B, F\}$ form a new *triangle*, which might have been predicted.

Assortativity

- Mixing: tendency of nodes to connect preferentially to other nodes with either similar or opposite properties.
- $\rho_D > 0$: the graph possesses assortative mixing, a preference of high-degree nodes to connect to other high-degree nodes.
- ρ_D <0: the graph possesses disassortative mixing, a preference of high-degree nodes to connect to low-degree nodes.

e.g., the "rich club":

Node removal

• Removing nodes or edges sequentially, to obtain a dendogram³

Fig.: A network dendrogram (aka hierarchical tree)

 $^{^3}$ http://perso.crans.org/aynaud/communities/api.html $\stackrel{>}{\scriptstyle{(2)}}$

A k-core of G is a connected component (maximal connected subgraph) of G in which all vertices have degree at least k $(\forall v \in subgraph(G), d(v) \geq k)$.

Modularity / The Louvain method

- Modularity: fraction of the edges that fall within the given communities, minus the expected fraction if edges were distributed at random.
 - Louvain modularity: measures the density of links inside communities compared to links between communities, $\in [-1,1]$:

$$LM(G) = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j),$$

with:

- c_v the community hosting node v
- ullet $k_{
 u}$ the sum of the weights of the edges attached to node v
- $\delta(c_i,c_j)$ the Kronecker delta function (i.e., zero if $c_i \neq c_j$)

Iterate: 1) assign community to each node that maximizes modularity, 2) build the resulting graph

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- Exploring graphs
- Importance metrics
- 6 Community metrics
- Comparing graphs
- TVGs: time varying graphs

Graph edit distance

- Edit distance: measure graph dissimilarity from the number as well as the strength of the distortions that have to be applied to transform a source pattern into a target pattern [2].
- Let G_1 and G_2 two graphs to compare, edit distance is:

$$ed_{\lambda_{min}(G_1,G_2)} = \min_{\lambda \in \gamma(G_1,G_2)} \sum_{e_i \in \lambda} c(e_i),$$

with:

- $\gamma(G_1, G_2)$ the set of editions from G_1 to G_2
- $c(e_i)$ the cost of edit operation e_i

Figure: An edit path λ between to graphs G_1 and G_2

Graphlet frequencies

- Comparing graphs based on the frequence of graphlets they have in their structure
- Graphlets: small connected induced subgraphs of a graph

Outline

- Graphs and representations
- Classical metrics
- Modeling and generating graphs
- Exploring graphs
- Importance metrics
- Community metrics
- Comparing graphs
- TVGs: time varying graphs

The time dimension

 When e.g., observed at runtime, some graphs are dynamic (arriving/departing nodes, edge creation/deletion).

 The time dimension is not classically used in graph analysis (focus on one single "snapshot"), while of obvious value.

The time dimension for community analysis

Figure: The fate of communities, observation possible through the time dimension

A model for time-varying graphs

• A time-varying graph (TVG) defined as [5]:

$$\mathscr{G} = (V, E, T, \rho, \varsigma),$$

with:

- ullet $T\subseteq \mathscr{T}$ the lifetime of the system captured as a graph
- $\rho: E \times T \rightarrow \{0,1\}$ the presence function, returning the edge presence at a given time
- $\varsigma: E \times T \to \mathscr{T}$ the latency function, returning the time needed to cross that edge, if starting at a given time

A journey in a TVG

Figure: A directed TVG, with fix nodes, but dynamic edges

- A journey: temporal extension of the notion of path.
- A sequence of tuples $\mathscr{J} = \{(e_1,t_1),(e_2,t_2)...,(e_k,t_k)\}$, with e_i a given edge in \mathscr{G} , is a journey if $\forall i,1 \leq i < k, \rho(e_i,t_i) = 1$ and $t_{i+1} \geq t$.
 - i.e., \mathscr{J} is a path over time in \mathscr{G} (set of all journeys is \mathscr{J}^*).
- Shortest distance starting at t from u to v is

$$dist^{t}(u,v) = min\{|\mathcal{J}| : \mathcal{J} \in \mathcal{J}^{*}(u,v) \land departure(\mathcal{J}) > t\}$$

References I

- L. Lovasz. Random Walks on Graphs: A Survey. Combinatorics, Paul Erdos is Eighty. 1993.
- K. Riesen. Structural Pattern Recognition with Graph Edit Distance, Advances in Computer Vision and Pattern Recognition. 2015.
- Xinbo Gao et al., A survey of graph edit distance, Pattern Anal Applic. 2010.
- Vishwanathan et al., Graph Kernels, Journal of Machine Learning Research. 2010.
- Santoro et al., Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics, SNAMAS. 2011
- Massoulié et al. Peer Counting and Sampling in Overlay Networks: Random Walk Methods, PODC. 2006.

References II

- Qiang Cao et al. Aiding the Detection of Fake Accounts in Large Scale Social Online Services. In USENIX/ACM Symposium on Networked Systems Design and Implementation, NSDI, 2012.
- GraphGen: A Scalable Approach to Domain-agnostic LabeledGraph Generation. In WWW, 2020.
- National Epidemic processes in complex networks, arXiv, 2015
- Marginalized Kernels Between Labeled Graphs, ICML, 2003.