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Graphs ?

Figure: A graph: entities (nodes/vertices) and connections (edges)

An abstraction/representation for reasoning about characteristics of

physical networks (computers, roads, circuits).

relational data.

Focus on the structure rather than on the details of modeled objects
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The omnipresence of graphs in applications

Figure: The Internet AS graph
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The omnipresence of graphs in applications

Figure: Interconnecting system-on-chips in a datacenter rack
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The omnipresence of graphs in applications

exemple use in social nets, epidemics...

Figure: From Networks, Crowds, and Markets: Reasoning about a
Highly Connected World . By David Easley and Jon Kleinberg.
Cambridge University Press, 2010.
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e.g.: recommendations on YouTube

Figure: Recommandations: contextual, personalized?
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e.g.: recommendations on YouTube

Figure: Blank pro�le vs. my recommandations
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Core notions (1)

Directed and undirected graphs:

in directed graphs, edges have orientation (arrow end)

A subgraph of G : formed by a subset of nodes/vertices and
edges from G .
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Core notions (2)

Edge weight: value assigned as a label to an edge.
e.g., distance in km of a road from city 1 to 2.

Graph connectivity:
A graph is connected if there is a path btw any pair of vertices.
Otherwise, connected components are the subgraphs in which
paths exist.
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Core notions (3)

A cycle: a path in which a vertex is reachable from itself.

Example of an acyclic connected graph: a tree

A planar graph: can be draw without any edges crossing each
other.
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Special topologies

Figure: Graphs to remember, often used as illustrations
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Adjacency list or edge list representations

Graph G (V ,E ), with V : nodes and E : edges.
Edge list:
[ [0,1], [0,6], [0,8], [1,4], [1,6], [1,9], [2,4], [2,6], [3,4], [3,5], [3,8],[4,5], [4,9], [7,8], [7,9] ]

O(|V |) access time to �nd an edge, but O(|E |) space in memory.
Adjacency list:
[ [1, 6, 8], [0, 4, 6, 9], [4, 6], [4, 5, 8], [1, 2, 3, 5, 9], [3, 4], [0, 1, 2], [8, 9], [0, 3, 7], [1, 4, 7] ]

O(1) access time to vertex , but O(|V |) to access a given edge.1
1https://www.khanacademy.org/computing/computer-

science/algorithms/graph-representation/a/representing-graphs
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Matrix representation

Figure: Matrix representation of previous graph

Find edge presence in O(1) time, but Θ(V 2) space in memory.
1's to be replaced by edge weigths for weighted graphs.
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Example tool families for manipulating graphs

Figure: For massive graphs (cannot �t into on server's memory)

X −Stream

Figure: Big graph processing on a single machine

Figure: For a database-like handling of graphs

NetworkX

Figure: Prototyping in Python, lots of contributions

Figure: Stanford Large Network Dataset Collection,
https://snap.stanford.edu/data/

Also: Koblenz Network Collection, http://konect.uni-koblenz.de/
Network Repository, http://networkrepository.com
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Basic notations

G (V ,E ): graph G with node set V , connected by edge set E .

V = {1,2,3,4,5,6};
E = [[1,5], [1,2], [2,3], [2,5], [3,4], [4,5], [4,6]]

Number of nodes is n = |V |, edges is m = |E |.
Neighbors of node i are set Γ(i).

Γ(1) = {2,5}
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Degree of a node

The degree dv of node v is equal to |Γ(v)| (its number of
neighbors).

Degree span: 0≤ dv ≤ n−1 (if no self loops).

Degree distribution P(d) is the probability distribution of each
degree in the current graph:

Figure: Degree distribution: x-axis is degree, y-axis is probability

In(out)-degree of v : counts incoming(outgoing) edges only.
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Clustering coe�cient

Every two nodes in a clique are neighbors.

Local clustering coe�cient of a node i measures

�how close are Γ(i) from being a clique�:

Ci =
2|ejk : vj ,vk ∈ Γ(vi ),ejk ∈ E |

di (di −1)

Average clustering coe�cient:

C̄ =
1

n

n

∑
i=1

Ci
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Path lengths

Path: sequence of adjacent nodes
connecting two nodes (if exists).

e.g., two paths btw 6 and 1: (4,5,1) and
(4,3,2,5,1).
One hop: one transition from a node to
another.

Shortest path: path of minimal cardinality.

Distance dist(6,1) = |(4,5,1)|= 3

Single-source shortest path (SSSP):
shortest paths from node i to all other
nodes (V \ i).
All-pairs shortest paths (APSP): SSSP
from ∀i ∈ V .
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Diameter

Average path length: average of all-pair shortest distances in
the graph.

Diameter: longest path of the APSP, i.e., greatest distance
between any pair of vertices.

diam(G ) = |(4,5,1)|= 3, starting at node 6.

Erwan Le Merrer Network science / Graph mining



Spectral analysis

The Laplacian matrix LG = D−A:

D is the degree matrix a diagonal-matrix with D(i , i) is the

degree of the ith node in G

A is the adjacency matrix, with A(i , j) = 1 if and only if

(i , j) ∈ E

LG (i , j) =


deg(i) if i = j

−1 if (i , j) ∈ E ≡ 1

0 otherwise
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Spectral analysis (2)

For an (undirected) graph G and its Laplacian matrix L = D−A

with eigenvalues λ0 ≤ λ1 ≤ ...≤ λn−1:

λ0 = 0, as v0 = (1,1, ...,1) satis�es Lv0 = 0 (row sum and

column sum of L are 0)

# of connected components in G is the algebraic multiplicity

of the 0 eigenvalue ( =⇒ λ2 = 0 i� G is disconnected)

the smallest non-zero eigenvalue of L is called the spectral

gap

the second smallest eigenvalue of L (could be zero) is the

algebraic connectivity of G

. . .
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Spectral analysis (3)

An example of a result: the diameter of a non complete graph G

satis�es:

diam(G )≤ d log(vol(G )/δ )

log λn−1+λ1
λn−1−λ1

e,

with δ the minimum degree of G and vol(G ) is the sum of the

degrees of the vertices in G.

. . . and multiple results from graph theory, in general or for speci�c

graphs
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Conductance

The conductance Φ(C ) of a set C of
vertices in a given graph G is the ratio
between the number of edges going out
from C and the number of edges inside C :

Φ(C ) =
|cut(C )|
vol(C )

,

where vol(C ) is the sum of the degrees of the
vertices in C .
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Expansion

Expansion of G: mean number of nodes that are reached in h

hops from all nodes:

eG (h) =
1

n2 ∑
v∈V
|Cv (h)|,

with Cv (h) the set of reachable nodes from v in h hops.
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Resilience

Measures the robustness of a graph:

rG (h) =
1

|E | ∑
v∈V

l(v , |Cv (h)|),

with l(v , |Cv (h)|) the number of edges that need to be removed to
split Cv (h) into 2 sets (of roughly the same size). h: distance
(hops).
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The Erd®s�Rényi random graph

Model G (n,p) for generating a canonical random graph.
Create n nodes.
Every pair of nodes connected with independant probability p.

Figure: A random graph with p = 0.01.

If np = 1, G almost surely has a largest component of
n = O(n2/3).

p = lnn
n

is a threshold for G's connectivity.

For a large n, resulting degree distribution is Poisson.
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The con�guration model

Arbitrary degree distribution: to choose
Create n nodes with each a given target degree, �tting the
distribution
Loop: take one node with remaining �free� neighbor, and
selected another node randomly to add an edge

Erwan Le Merrer Network science / Graph mining



The Watts-Strogatz graph

Graphs with high clustering (like regular graphs), and low path
lengths (like a random graph).

Create a ring lattice of n nodes.
Replace every edge by a random edge, with probability p.
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The Barabási�Albert scale-free graph

Model to generate a graph with power-law degree-distribution.
Create m0 nodes, as a connected graph.
Iteratively add one node, and connect it to m <m0 nodes,
with probability depending on the degree of existing nodes:
pi = di

Σjdj
(method called preferential attachment).

Figure: A Barabási-Albert graph with n = 50 and m0 = 1.

Well connected nodes �accumulate� incoming links: rich gets
richer

Resulting degree distribution is P(d)∼ d−3.

Average path length is lnn
ln lnn .
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A real structure example

Figure: Bow-tie structure of the web
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Generating graphs with neural nets: GraphGen (1)

How to generate graphs from an unknown generative process?
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Generating graphs with neural nets: GraphGen (2)

Instances of graphs in a categorie → learn → generate others
[8]

Converting a graph to a sequence

Figure: Extracting DFS "codes" from a graph to learn from.

5-tuples (tu, tv ,Lu,L(u,v),Lv ), with L the label. Fig (b):
(0,1,X ,a,X ),(1,2,X ,a,Z ),(2,0,Z ,b,X ),(1,3,X ,b,Y ).
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Generating graphs with neural nets: GraphGen (3)

A recurrent neural network (RNN) learns a DFS sequence S
p(S) = ∏

m+1
i=1 p(si |s1, ...,si−1) (i.e., conditional distribution

over the elements.)

Generation from m = 1 to m = |E |, one single edge at a time
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Depth �rst search

Graph exploration, from a given start node,
depth �rst:

def d f s ( graph , s t a r t ) :
v i s i t e d , s t a c k = set ( ) , [ s t a r t ]
whi le s t a c k :

v e r t e x = s t a ck . pop ( )
i f v e r t e x not i n v i s i t e d :

v i s i t e d . add ( v e r t e x )
s t a c k . ex tend ( graph [ v e r t e x ] − v i s i t e d )

re tu rn v i s i t e d
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Breadth �rst search

breadth �rst:

def b f s ( graph , s t a r t ) :
v i s i t e d , queue = set ( ) , [ s t a r t ]
whi le queue :

v e r t e x = queue . pop (0 )
i f v e r t e x not i n v i s i t e d :

v i s i t e d . add ( v e r t e x )
queue . ex tend ( graph [ v e r t e x ] − v i s i t e d )

re tu rn v i s i t e d

Queue → search in vertices breadth (FIFO)
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Eulerian path

An Eulerian path visits every edge exactly once
(allowing for revisiting vertices).

Euler's Theorem: A connected graph has an
Euler cycle if and only if every vertex has even
degree.
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Random walk

Randomized exploration.

Given a graph and a start node, a simple random walk [1]
proceeds by random steps:

selects uniformly at random a neighbor from walk position
jump on it
loop process

Figure: Random walk on a grid (i.e.,
4 neighbors per node)

RDW(6,7hops)=(6,4,3,4,5,4,3,2)
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Random walks - app1: sampling (biased)

Select a random node in the graph (but biased).

Given a graph, a start node, and a �large� h use a simple
random walk:

selects uniformly a neighbor; jump on it; h← h−1
loop until h ≤ 0

Results in probability of node j to be selected: Pj =
dj

Σn
i=0di

Erwan Le Merrer Network science / Graph mining



Random walks - app1: sampling (uniform)

Select a random node in the graph uniformly
(Metropolis-Hastings method).

Same as for biased except that, from current node i :

generate p ∼ U(0,1)

selects uniformly a neighbor j ; jump on it if p ≤min{1, di
dj
},

else stay on i

Results in probability of node j to be selected: Pj = 1
Σn
i=0di
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Random walks - app2: counting

Distributed computation of n; based on the birthday paradox
[6].

Sample uniformly nodes: Xt+1← Xt ∪ j
Stop when �collision� after l samples, i.e., when a node j

appears twice in Xt

n̂ =
√
l2/2
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Random walks - app3: sybil detection

�Early-terminated random walk starting from a non-Sybil node
in a social network has a higher degree-normalized (divided by
the degree) landing probability to land at a non-Sybil node
than a Sybil node�. [7]

observation holds because the limited number of attack edges
forms a narrow passage from the non-Sybil region to the Sybil
region in a social network.
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Spanner

A spanner H of a graph G : subgraph of G with few edges and
short distances.2 Tradeo� between number of edges and
distance stretch.
(α,β )-spanner of G ⇐⇒ ∀(u,v):
distH((u,v))≤ α×distG ((u,v)) + β , with α : multiplicative
stretch, β : additive stretch.

H := {}
For each edge (u , v ) i n E do

I f dist_H ( ( u , v ) ) > 2k−1 do
add (u , v ) to H

H is a (2k−1,0)-spanner of
G .

|VH |< n
1+1/k
G .

2Graph spanners, Viennot, 2010.
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Epidemics on graphs (1)

Epidemic on graph nodes: models
with states Susceptible, Infected,
Recovered, Exposed.[9]

SIS-like: λ = β/µ

Order parameter ρ :
transition point λc ,
s.t. for λ > λc →
ρ > 0, while for
λ ≤→ ρ = 0
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Epidemics on graphs (2)

Application to marketing: which initial node for best spread?

Figure: cf �A targeted approach to viral marketing�
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Measuring the importance of individual nodes

Importance has to be
de�ned precisely, generally
based on the application
using the extracted
importance metrics.

Here, centrality metrics
target individual
importance, with regards to
the rest of nodes in the
graph.

Figure: Various importance results

Erwan Le Merrer Network science / Graph mining



Degree centrality

An important node is a node that has many neighbors

Cd (i) =
d(i)

n−1
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Pagerank basic computation

assign all nodes the same initial PageRank: 1/n

perform k updates of the PR values, as follows:

Each node divides its current PR equally across its out-going
links, and passes these equal shares to the nodes it points to.
Nodes update PRs to be the sum of the shares they receive.

PR(i) = ∑
j∈Γ(i)

PR(j)

|Γout(j)|
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Closeness centrality

An important node is close from all other nodes in the graph

Cc(i) =
1

∑j∈V d(i , j)
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Eccentricity

An important node is not eccentered

Ce(i) =
1

maxj∈V dist(i , j)
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Betweeness centrality

An important node is a node that lies on many shortest paths

Cb(i) = ∑
j 6=k 6=i

σjk(i)

σjk

,

where σjk(i) the number of s.p. from j to k passing through i
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Random walk betweeness centrality

An important node is a node that is on many potential paths
∀j ,k ∈ V , j sends a random walk (r.w.) that stops on k ;
each node i on the r.w. path earns a point
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Second Order centrality

An important node see regularly random data �ows

Let an unbiased random walk running on the graph

Each node records return time of the walk in Ξi

After N visits on a node i , its standart deviation is:

Cσi
(N) =

√
1

N−1 ∑
N
k=1 Ξi (k)2− [ 1

N−1 ∑
N
k=1 Ξi (k)]2,

Important nodes have a low standart deviation of those return times
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Removal impact on path lengths

Figure: Evolution of path length, while removing top-ranked nodesErwan Le Merrer Network science / Graph mining
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Detecting communities in graphs
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Triadic closure

�If two people in a social network have a friend in common,

then there is an increased likelihood that they will become

friends themselves at some point in the future�.

{G ,B,F} form a new triangle, which might have been
predicted.



Assortativity

Mixing: tendency of nodes to connect preferentially to other
nodes with either similar or opposite properties.
ρD>0: the graph possesses assortative mixing, a preference of
high-degree nodes to connect to other high-degree nodes.
ρD<0: the graph possesses disassortative mixing, a preference
of high-degree nodes to connect to low-degree nodes.

e.g., the �rich club�:
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Node removal

Removing nodes or edges sequentially, to obtain a dendogram3

3http: // perso. crans. org/ aynaud/ communities/ api. html
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k-core

A k-core of G is a connected component (maximal connected
subgraph) of G in which all vertices have degree at least k
(∀v ∈ subgraph(G ),d(v)≥ k).
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Modularity / The Louvain method

Modularity: fraction of the edges that fall within the given
communities, minus the expected fraction if edges were
distributed at random.

Louvain modularity: measures the density of links inside
communities compared to links between communities,
∈ [−1,1]:

LM(G ) =
1

2m ∑
ij

[
Aij −

kikj
2m

]
δ (ci ,cj),

with:

cv the community hosting node v

kv the sum of the weights of the edges attached to node v

δ (ci ,cj) the Kronecker delta function (i.e., zero if ci 6= cj)

Iterate: 1) assign community to each node that maximizes
modularity, 2) build the resulting graph
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Graph edit distance

Edit distance: measure graph dissimilarity from the number as
well as the strength of the distortions that have to be applied
to transform a source pattern into a target pattern [2].

Let G1 and G2 two graphs to compare, edit distance is:

edλmin(G1,G2) = min
λ∈γ(G1,G2)

∑
ei∈λ

c(ei ),

with:

γ(G1,G2) the set of editions from G1 to G2

c(ei ) the cost of edit operation ei

Figure: An edit path λ between to graphs G1 and G2
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Graphlet frequencies

Comparing graphs based on the frequence of graphlets they
have in their structure

Graphlets: small connected induced subgraphs of a graph
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The time dimension

When e.g., observed at runtime, some graphs are dynamic
(arriving/departing nodes, edge creation/deletion).

The time dimension is not classicaly used in graph analysis
(focus on one single �snapshot�), while of obvious value.
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The time dimension for community analysis

Figure: The fate of communities, observation possible through the time
dimension
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A model for time-varying graphs

A time-varying graph (TVG) de�ned as [5]:

G = (V ,E ,T ,ρ,ς),

with:

T ⊆T the lifetime of the system captured as a graph

ρ : E ×T →{0,1} the presence function, returning the edge
presence at a given time

ς : E ×T →T the latency function, returning the time
needed to cross that edge, if starting at a given time
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A journey in a TVG

Figure: A directed TVG, with �x nodes, but dynamic edges

A journey: temporal extension of the notion of path.

A sequence of tuples J = {(e1, t1),(e2, t2)...,(ek , tk)}, with ei
a given edge in G , is a journey if ∀i ,1≤ i < k ,ρ(ei , ti ) = 1 and
ti+1 ≥ t.

i.e., J is a path over time in G (set of all journeys is J ∗).

Shortest distance starting at t from u to v is

distt(u,v) = min{|J | : J ∈J ∗(u,v)∧departure(J ) > t}
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