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@ Graphs and representations
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Graphs 7

Figure: A graph: entities (nodes/vertices) and connections (edges)
An abstraction/representation for reasoning about characteristics of

@ physical networks (computers, roads, circuits).
@ relational data.

Focus on the structure rather than on the details of modeled objects
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The omnipresence of graphs in applications

Figure: The Internet AS graph
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The omnipresence of graphs in applications
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Figure: Interconnecting system-on-chips in a datacenter rack
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The omnipresence of graphs in applications

@ exemple use in social nets, epidemics...

All Frie nds Maintained Relationships

One-way Communication Mutual Communication

Figure 3.8: Four different views of a Facebook user’s network neighborhood, showing the
structure of links coresponding respectively to all declared friendships, maintained relation-
ships, one-way communication, and reciprocal (i.e. mutual) communication. (Image from
[286])
Figure: From Networks, Crowds, and Markets: Reasoning about a
Highly Connected World . By David Easley and Jon Kleinberg.

Cambridge University Press, 2010.
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Figure: Recommandations: contextual, personalized?
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e.g.. recommendations on YouTube

4-hops graphs from a YouTube video, new user (left) and returning user (ri

Figure: Blank profile vs. my recommandations
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Core notions (1)

@ Directed and undirected graphs:
e in directed graphs, edges have orientation (arrow end)

A4 V

@ A subgraph of G: formed by a subset of nodes/vertices and
edges from G.

1 1

G G[S]
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Core notions (2)

o Edge weight: value assigned as a label to an edge.
e e.g., distance in km of a road from city 1 to 2.

o

o

@ Graph connectivity:
o A graph is connected if there is a path btw any pair of vertices.
o Otherwise, connected components are the subgraphs in which

paths exist.

el
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Core notions (3)

@ A cycle: a path in which a vertex is reachable from itself.
e Example of an acyclic connected graph: a tree

@ A planar graph: can be draw without any edges crossing each
other.

Erwan Le Merrer Network science / Graph mining



Special topologies
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Figure: Graphs to remember, often used as illustrations




Adjacency list or edge list representations

Graph G(V,E), with V: nodes and E: edges.

Edge list:

[[0.1], [0.6], [0.8], [1.4], [1,6], [1,9], [2.4], [2.6], [3.4]. [3.5]. [3.81[4.5], [4,9]. [7.8], [7,9] ]

O(| V) access time to find an edge, but O(|E|) space in memory.
Adjacency list:

[ [1. 6, 8], [0, 4, 6, 9], [4, 6], [4, 5, 8], [1, 2, 3,5, 9], [3, 4], [0, 1, 2], [8 9], [0, 3, 7], [1, 4, 7] ]
O(1) access time to vertex , but O(|V|) to access a given edge.’

Thttps:/ /www.khanacademy.org/computing/computer-
science/algorithms/graph-representation/a/representing-graphs
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Matrix representation

Figure: Matrix representation of previous graph

Find edge presence in O(1) time, but ©(V2) space in memory.
1's to be replaced by edge weigths for weighted graphs.
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Example tool families for manipulating graphs
C&S%Graph/lf

Figure: For massive graphs (cannot fit into on server's memory)

X — Stream

Figure: Big graph processing on a single machine
.. H
@neoy]
Figure: For a database-like handling of graphs

NetworkX

Figure: Prototyping in Python, lots of contributions

ord | oroe Nebork acat Colloction
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https://snap.stanford.edu/data/

© Classical metrics
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Basic notations

(&)

e G(V,E): graph G with node set V, connected by edge set E.
o V=1{1,2,3,4,56};
E=1[1,5],[1,2],[2,3],2,5].[3,4], 4,5, [4,6]]

@ Number of nodes is n=|V/|, edges is m = |E]|.

@ Neighbors of node i are set I'(/).
o [(1)={2,5}
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Degree of a node

@ The degree d, of node v is equal to |['(v)| (its number of
neighbors).

@ Degree span: 0<d, <n—1 (if no self loops).

@ Degree distribution P(d) is the probability distribution of each
degree in the current graph:

Figure: Degree distribution: x-axis is degree, y-axis is probability

@ In(out)-degree of v: counts incoming(outgoing) edges only.
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Clustering coefficient

@ Every two nodes in a clique are neighbors.

e Local clustering coefficient of a node i measures o
*how close are ['(i) from being a clique”:
2lej : vj, vk € T(vi), ek € E|
di(di—1) c=1

@ Average clustering coefficient: o Q/C>
_ 18
C==-)Y¢G
niz

c=1/3

C=

Q,
® D
O

c=0
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Path lengths

@ Path: sequence of adjacent nodes
connecting two nodes (if exists).

e e.g., two paths btw 6 and 1: (4,5,1) and e ‘o
(43251).

e One hop: one transition from a node to
another.

@ Shortest path: path of minimal cardinality.
o Distance dist(6,1) = |(4,5,1)| =3
e Single-source shortest path (SSSP):
shortest paths from node / to all other
nodes (V'\ 7).
o All-pairs shortest paths (APSP). SSSP
fromVie V.
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(&)

@ Average path length: average of all-pair shortest distances in
the graph.

@ Diameter. longest path of the APSP, i.e., greatest distance
between any pair of vertices.

o diam(G)=(4,5,1)| = 3, starting at node 6.
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Spectral analysis

The Laplacian matrix L = D — A:

@ D is the degree matrix a diagonal-matrix with D(i,i) is the
degree of the ith node in G

e A is the adjacency matrix, with A(i,j) =1 if and only if

(iJ)€E
deg(i) ifi=j
Lo(i,j)=14 -1 if(i,j)e E=1
0 otherwise
Labelled graph Degree matrix Adjacency matrix Laplacian matrix
200000 o1 0010 2 -1 0 0 -1 0
Q 030000 101010 -1 3§ -1 0 -1 0
oeo 00 2000 010100 0 -1 2 -1 o0
.‘ o003 00 001011 0 0 -1 3 -1 -1
e o o000 30 110100 1 1 0 1 3 0
000001 000100 0o 0 0 -1 0 1
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Spectral analysis (2)

For an (undirected) graph G and its Laplacian matrix L =D — A
with eigenvalues g <A1 < ... <A, 1:
e A =0, as vop =(1,1,...,1) satisfies Lvy =0 (row sum and
column sum of L are 0)
e # of connected components in G is the algebraic multiplicity
of the 0 eigenvalue (= A, =0 iff G is disconnected)
@ the smallest non-zero eigenvalue of L is called the spectral
gap
@ the second smallest eigenvalue of L (could be zero) is the
algebraic connectivity of G
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Spectral analysis (3)

An example of a result: the diameter of a non complete graph G
satisfies: I (GV/6
diam(G) < EI(6)/8)

7
Iog %{nfl +M

n—1 _Al

with 8 the minimum degree of G and vol(G) is the sum of the
degrees of the vertices in G.

...and multiple results from graph theory, in general or for specific
graphs
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@ The conductance ®(C) of a set C of _—
. . . . . HONEST . SYBIL
vertices in a given graph G is the ratio W
between the number of edges going out &

N

from C and the number of edges inside C:/ -+

_ Jeut()| .
where vol(C) is the sum of the degrees of the - ;L

vertices in C.
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Expansion

@ Expansion of G: mean number of nodes that are reached in h
hops from all nodes:

ec(h)= 5 ¥ 1G/(h)]

vev

with C,(h) the set of reachable nodes from v in h hops.

your friends

................... b h%  friends of your friends

(a) Pure cxponential growth produces a small world

your friends

frlends of your friends

(b) Triadic closure reduces the growth mie
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Resilience

@ Measures the robustness of a graph:
I(v,|Cy(h)])
%

with /(v,|C,(h)|) the number of edges that need to be removed to
split Cy(h) into 2 sets (of roughly the same size). h: distance

(hops).
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© Modeling and generating graphs
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The Erd6s—Rényi random graph

e Model G(n,p) for generating a canonical random graph.
o Create n nodes.
o Every pair of nodes connected with independant probability p.

Figure: A random graph with p =0.01.

e If np=1, G almost surely has a largest component of
n= 0(n?3).
o p= '"T” is a threshold for G's connectivity.

o For a large n, resulting degree distribution is Poisson.
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The configuration model

@ Arbitrary degree distribution: to choose
o Create n nodes with each a given target degree, fitting the
distribution
e Loop: take one node with remaining “free” neighbor, and
selected another node randomly to add an edge

k=3 k=2 kz=2 k=1

"seee

b. ' bl ' . "
e ) s
- 2 B B

. Q9 00 eo oo

>
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The Watts-Strogatz graph

e Graphs with high clustering (like regular graphs), and low path
lengths (like a random graph).

o Create a ring lattice of n nodes.
o Replace every edge by a random edge, with probability p.

Figure 3.2: WS graphs with n = 20, £ =4, and p = 0 (left), p = 0.2 (middle),
and p =1 (right).
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The Barabasi—Albert scale-free graph

o Model to generate a graph with power-law degree-distribution.
o Create mg nodes, as a connected graph.
o lteratively add one node, and connect it to m < mg nodes,
with probability depending on the degree of existing nodes:
pi = Zjii,- (method called preferential attachment).

Figure: A Barabasi-Albert graph with n =50 and my = 1.

@ Well connected nodes “accumulate” incoming links: rich gets
richer

o Resulting degree distribution is P(d) ~ d~3.

o Average path length is 12

Inlnn-
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Figure: Bow-tie structure of the web
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Generating graphs with neural nets: GraphGen (1)

@ How to generate graphs from an unknown generative process?

(a) Real graphs (b) GraphGen
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Generating graphs with neural nets: GraphGen (2)

@ Instances of graphs in a categorie — learn — generate others
[8]

o Converting a graph to a sequence

Vo O\ Vorty, =0 Vo, by, = 1
(x) X)
a S a
b/ A~y b= _ b B
2\){\ 1 SX)ut, =1 vy, by, =0
g ARG =207} [y, = r =2( 7% N, =
@ (7 vwh=2(2)  (Hr2he=3 vb,=2(2) ()b, =3

(a) Graph (b) DFS traversal on the graph (c) DFS traversal on the graph

Figure: Extracting DFS "codes" from a graph to learn from.

o 5-tuples (ty, tv,Lu,L(yy),Lv), with L the label. Fig (b):
(0,1,X,a,X),(1,2,X,a,2),(2,0,Z,b,X),(1,3,X,b,Y).
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Generating graphs with neural nets: GraphGen (3)

@ A recurrent neural network (RNN) learns a DFS sequence S
p(S) =TI™ p(silst, -, si-1) (i-e., conditional distribution
over the elements.)

@ Generation from m =1 to m = |E|, one single edge at a time

hg

SOS

——> State Update
~———> Output generation

Figure 3: Architecture of GRAPHGEN. Red arrows indicate
data flow in the RNN whose hidden state h; captures the
state of the graph generated so far. Blue arrows show the
information flow to generate the new edge tuple s;.
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@ Exploring graphs
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Depth first search

@ Graph exploration, from a given start node,
depth first:

def dfs(graph, start):
visited , stack = set(), [start]
while stack:
vertex = stack.pop()
if vertex not in visited:
visited .add(vertex)
stack .extend(graph[vertex] — visited)
return visited
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Breadth first search

o breadth first:

def bfs(graph, start):
visited , queue = set(), [start]
while queue:
vertex = queue.pop(0)
if vertex not in visited:
visited .add(vertex)
queue.extend (graph[vertex] — visited)
return visited

@ Queue — search in vertices breadth (FIFO)
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Eulerian path

@ An Eulerian path visits every edge exactly once
(allowing for revisiting vertices).

o Euler’'s Theorem: A connected graph has an
Euler cycle if and only if every vertex has even
degree.
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Random walk

@ Randomized exploration.
e Given a graph and a start node, a simple random walk [1]
proceeds by random steps:

e selects uniformly at random a neighbor from walk position
e jump on it
o loop process

i

i oeo
F%Y

RDW(6,7hops)=(6,4,3,4,5,4,3,2)

18
H
B!
e
H

Figure: Random walk on a grid (i.e.,
4 neighbors per node)
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Random walks - appl: sampling (biased)

@ Select a random node in the graph (but biased).

@ Given a graph, a start node, and a “large” h use a simple
random walk:
o selects uniformly a neighbor; jump on it; h< h—1
o loop until h<0
@ Results in probability of node j to be selected: P; = 72:1,- 7
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Random walks - appl: sampling (uniform)

@ Select a random node in the graph uniformly
(Metropolis-Hastings method).
@ Same as for biased except that, from current node i:
e generate p ~ U(0,1)
o selects uniformly a neighbor j; jump on it if p < min{l,%},
else stay on /

@ Results in probability of node j to be selected: P; = ﬁ
=01
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Random walks - app2: counting

@ Distributed computation of n; based on the birthday paradox
[6]-
e Sample uniformly nodes: X, 1 < X;Uj
o Stop when “collision” after / samples, i.e., when a node j

appears twice in X;
o N=14/I?/2
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Random walks - app3: sybil detection

@ “Early-terminated random walk starting from a non-Sybil node
in a social network has a higher degree-normalized (divided by
the degree) landing probability to land at a non-Sybil node
than a Sybil node”. [7]

e observation holds because the limited number of attack edges
forms a narrow passage from the non-Sybil region to the Sybil
region in a social network.

Tightly connected

- _Loosely connected-

’
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@ A spanner H of a graph G: subgraph of G with few edges and
short distances.? Tradeoff between number of edges and
distance stretch.

o (a,B)-spanner of G <= V(u,v):
disty((u,v)) < o x distg((u,v)) + B, with a: multiplicative
stretch, B: additive stretch.

From a graph 6
H := {} P —
For each edge (u,v) in E do
If dist_ H((u,v)) > 2k-1 do
add (u,v) to H

e His a (2k—1,0)-spanner of

G.
o |VH‘ < n?_l/k.
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Epidemics on graphs (1)

Goeo @ SIS-like: A =f/u
9.0' @ Order parameter p:
transition point Ac,

: ’ s.t. for A > A, —
sk s Ol (R p > 0, while for

B =
SIS S ——
'\L,_l'l_,/.

SRS S B—. S t
n_—

*
S~

stR s PLUE Y0l R

P No epidemic
Absorbing phase

Epidemic
Active phase

Epidemic on graph nodes: models
with states Susceptible, Infected,

Recovered, Exposed.[9] 3 >
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Epidemics on graphs (2)

@ Application to marketing: which initial node for best spread?

Fig. 1. Example of a social network. Black node denotes the globally central node; chequered
nodes denote the potential market; hatched node denotes the node central w.r.t. the potential
market.

Figure: cf “A targeted approach to viral marketing”
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© Importance metrics
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Measuring the importance of individual nodes

@ Importance has to be
defined precisely, generally
based on the application
using the extracted
importance metrics.

@ Here, centrality metrics
target individual
importance, with regards to
the rest of nodes in the

graph.

Figure: Various importance results
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Degree centrality

Highest
beMegnness Best
centrality

closeness
centrality

-

™ &

Highest il I
eigenvector / | \\ Highest
central / | :
ty Fi § degree
Or o centrality
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Pagerank basic computation

@ assign all nodes the same initial PageRank: 1/n

e perform k updates of the PR values, as follows:
o Each node divides its current PR equally across its out-going
links, and passes these equal shares to the nodes it points to.
Nodes update PRs to be the sum of the shares they receive.
PR(i)= ) L(J_)
jer() |r0ut(,/)|
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Closeness centrality

Highest

betweenness g
ety closeness
centrality

-~

\ b K

1%

Highest il
eigenvector /

LR
; 1 X Highest
centrality /

| degree
o centrality

An important node is close from all other nodes in the graph

1

CC(i) - Zjev d(i,j)
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Eccentricity

An important node is not eccentered

1

Celi) = max;ey dist(i))
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Betweeness centrality

Highest
bet\:le?nness Best
ety closeness

\ centrality
=

Highest Gl (‘j/” i

L
eigenvector / "\ \\ Highest
centrality / degree

o centrality

Co(i)= Y, GJL(II),
JFkFi

where oji (i) the number of s.p. from j to k passing through /
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Random walk betweeness centrality

(a)

Vertices A and B have high (shortest-path) betweenness in
this configuration, while vertex C does not.

An important node is a node that is on many potential paths
Vj,k € V, j sends a random walk (r.w.) that stops on k;
each node i on the r.w. path earns a point
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Second Order centrality

Vertices A and B have high (shortest-path) betweenness in
this configuration, while vertex C does not.

An important node see regularly random data flows
@ Let an unbiased random walk running on the graph
@ Each node records return time of the walk in =;
o After N visits on a node i, its standart deviation is:

1 vN = 1 vN =
Cor(N) = /7 BN Zi(K)? — [ TR iR,
Important nodes have a low standart deviation of those return times
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© Community metrics
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Detecting communities in graphs

Baital

O

i el 4
mlple e .&‘ .'k W]
* pargotwall rom
.
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Triadic closure

e “If two people in a social network have a friend in common,
then there is an increased likelihood that they will become
friends themselves at some point in the future”.

(a) Before new edges form. (b) After new edges form.

e {G,B,F} form a new triangle, which might have been
predicted.



Assortativity

e Mixing: tendency of nodes to connect preferentially to other
nodes with either similar or opposite properties.

@ pp>0: the graph possesses assortative mixing, a preference of
high-degree nodes to connect to other high-degree nodes.

@ pp<0: the graph possesses disassortative mixing, a preference

of high-degree nodes to connect to low-degree nodes.
e.g., the “rich club™
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Node removal

e Removing nodes or edges sequentially, to obtain a dendogram®

|

Ll

Fig.: A network dendrogram (aka hierarchical tree)

3http: //perso. crans. org/ aynaud/ communities/ aps. html
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http://perso.crans.org/aynaud/communities/api.html

@ Coreness 3
@ Coreness 2

O Coreness 1

A k-core of G is a connected component (maximal connected

subgraph) of G in which all vertices have degree at least k
(Vv € subgraph(G),d(v) > k).
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Modularity / The Louvain method

e Modularity: fraction of the edges that fall within the given
communities, minus the expected fraction if edges were
distributed at random.

e Louvain modularity: measures the density of links inside
communities compared to links between communities,
e[-1,1]

1

LM(G)=— [A,-j

1

2m =
ij

ik

o ] d(ci, cj),

with:
@ ¢, the community hosting node v
@ k, the sum of the weights of the edges attached to node v
@ 0(cj,cj) the Kronecker delta function (i.e., zero if ¢; # c;j)

Iterate: 1) assign community to each node that maximizes
modularity, 2) build the resulting graph
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@ Comparing graphs
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Graph edit distance

e Edit distance: measure graph dissimilarity from the number as
well as the strength of the distortions that have to be applied
to transform a source pattern into a target pattern [2].

o Let Gy and G, two graphs to compare, edit distance is:
ed; . = min c(e),
Amin( G, €2) zey(Gl,Gz)e,% ()
with:
e ¥(Gi, Gy) the set of editions from Gy to G

o c(ej) the cost of edit operation ¢;

a1

Uz O—0 us uz OQ—O U3 V3 O—O u;

w QO Duy D uy O uy g O w Own

Figure: An edit path A between to graphs G; and G,
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Graphlet frequencies

o Comparing graphs based on the frequence of graphlets they
have in their structure

@ Graphlets: small connected induced subgraphs of a graph

2-node  3-node graphlets 4-node graphlets
graphlet e EPS 4: , s ne—e 138 e
IqI 20 f_.ff ."\ r I I ”\'{j’ 12cf je) -"'fI\.'-
o ¢ o oo o ve ¢ &
Gy G, G, Gy Gy Gs Gg G, Gg

5-node graphlets

FJ', 18 Ye—e 34 46
W 32 43

w; 30; 22 258 < e—@ 37 4n Lo 4 ::)i\’:-

e, . + Gs @

& Q2 237 = Q28 '-;_{33 3& )] 42\ )] 4403 47
134 e oy siie o . 35 o o 4
GQ Gl@ Gll G12 Gl3 Gld GIS Glﬁ Gl? GlE
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© TVGs: time varying graphs
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The time dimension

@ When e.g., observed at runtime, some graphs are dynamic
(arriving/departing nodes, edge creation/deletion).

@ The time dimension is not classicaly used in graph analysis
(focus on one single “snapshot”), while of obvious value.
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The time dimension for community analysis

grO‘«V’fh_____l contraction
t ——  t+1 t -t
@gr&ing splitting w
t —  t+1

birth
t —  t+1 t — 41

Figure: The fate of communities, observation possible through the time
dimension
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A model for time-varying graphs

@ A time-varying graph (TVG) defined as [5]:
¢ =(V.E,T,p,g),

with:
o T C 7 the lifetime of the system captured as a graph

e p: ExT —{0,1} the presence function, returning the edge
presence at a given time

@ ¢:Ex T — 7 the latency function, returning the time
needed to cross that edge, if starting at a given time
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A journey in a TVG
/@—45.15]-—%}
[4,20] '\
O

[2.8] [3.9]

.21
T (12, 20}—

[5,10] [8,10]

Figure: A directed TVG, with fix nodes, but dynamic edges

@ A journey: temporal extension of the notion of path.

e A sequence of tuples 7 = {(e1,t1),(e2,t2)...,(ek, tk)}, with e
a given edge in ¢, is a journey if Vi,1 <i < k,p(ej,t;)=1 and
tir1 >t

e i.e., Z isa path over time in & (set of all journeys is ¢*).

@ Shortest distance starting at t from u to v is

dist'(u,v) =min{|_7|: # € #*(u,v)Adeparture(_#) > t}
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