
Articles
https://doi.org/10.1038/s42256-020-0216-z

1Inria Rennes – Bretagne Atlantique Research Centre, Rennes, France. 2French National Centre for Scientific Research, Paris, France.  
✉e-mail: erwan.le-merrer@inria.fr; gtredan@laas.fr

Modern decision making driven by blackbox systems now 
impacts much of our lives1,2. These systems build on user 
data and range from recommenders3 (for example, for 

personalized ranking of information) to predictive algorithms (for 
example, for credit default likelihood)1. This widespread deploy-
ment, along with the opaque decision processes of these systems, 
raises concerns about transparency for the general public and policy 
makers4. This has translated, in some jurisdictions (for example, in 
the United States and Europe), into a so-called ‘right to explana-
tion4,5, which states that the output decisions of an algorithm must 
be motivated.

An already large body of work has explored the explainability 
of implicit machine learning models (such as neural network mod-
els)6–8. Indeed, these models show state-of-the-art performance 
when it comes to task accuracy, but they are not designed to pro-
vide explanations—or at least intelligible decision processes—when 
one wants to obtain more than the output decision of the model. In 
the context of recommendation, the expression ‘post hoc explana-
tion’ has been coined9. In general, current techniques regarding the 
explainability of implicit models take trained in-house models and 
aim to shed light on some input features that cause salient decisions 
in their output space. LIME10 (local interpretable model–agnostic 
explanations), for example, builds a surrogate model of a given 
blackbox system that approximates predictions around a region 
of interest. The surrogate is created from a newly crafted dataset, 
obtained from permutation of the original dataset values around the 
zone of interest and observation of the decisions made for this data-
set). This surrogate is an explainable model by construction (such 
as a decision tree), so it can explain the decision that follows from 
a specific input. The number of queries to the blackbox model is 
assumed to be unbounded by LIME and other systems11,12, permit-
ting virtually exhaustive queries. This reduces their applicability to 
the inspection of in-house models by their designers.

As suggested by Andreou and others13, some institutions could 
apply the same reasoning to explain some decisions to their users. 
Indeed, this would support the public’s desire for a more transpar-
ent and trusted web. Facebook, for example, attempted to offer a 

form of transparency for the advertisement (ad) mechanism target-
ing its users by introducing a ‘Why am I seeing this ad?’ button on 
received ads. For users, the decision-making system (here, respon-
sible for selecting relevant ads) is remote, and can be queried only 
by using inputs (their profile data). Yet, from a security standpoint 
(a security model where the remote server (executing the service) 
is untrusted by the users is considered in ref. 14), Andreou and col-
leagues13 empirically observed in the case of Facebook that these 
explanations are ‘incomplete and can be misleading’, conjecturing 
that malicious service providers can use this incompleteness to hide 
the true reasons behind their decisions.

In this Article, we question the possibility of such an explanation 
set-up, where a corporate and private model is issuing decisions to 
users. We go one step further by demonstrating that remote explain-
ability simply cannot be a reliable guarantee of a lack of discrimi-
nation in the decision-making process. In a remote blackbox set-up 
such as that of Facebook, we show that a simple attack, which we coin 
the ‘public relations’ (PR) attack, undermines remote explainability.

For demonstration purposes we introduce the ‘bouncer problem’ 
as an illustration of the difficulty for users to spot malicious expla-
nations. The analogy works as follows: let us picture a bouncer at the 
door of a club, deciding who may enter. When he issues a negative 
decision—refusing entrance to a given person—he also provides an 
explanation for this rejection. However, his explanation might be 
malicious, in the sense that his explanation does not present the true 
reasons for the rejection. Consider, for example, a bouncer discrimi-
nating people based on the colour of their skin. Of course he will not 
tell people he is refusing them entrance based on that characteristic, 
because this is a legal offence. He will, instead, invent a biased expla-
nation that the rejected person is likely to accept.

The classic way to assess discrimination by a bouncer is for asso-
ciations to run tests (following the principle of statistical causality15, 
for example): several persons who attempt to enter vary only in their 
attitude or appearance in terms of the possibly discriminating fea-
ture (such as the colour of their skin). Conflicting decisions by the 
bouncer are then an indication of a possible discrimination, sup-
porting building a case for prosecution.
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We make a parallel with bouncer decisions in this Article by 
demonstrating that a user cannot trust a single (one-shot) expla-
nation provided by a remote model. Moreover, we show that cre-
ating such malicious explanations necessarily creates inconsistent 
answers for some inputs, and the only way to spot those inconsis-
tencies is to issue multiple requests to the service. Unfortunately,  
we also demonstrate the problem to be hard, in the sense that  
spotting an inconsistency in such a way is intrinsically not more 
efficient than for a model creator to exhaustively search on her local 
model to identify a problem, which is often considered an intrac-
table process.

In the next section we build a general set-up for remote explain-
ability, which has the purpose of representing actions by a service 
provider and by users facing model decisions and explanations. The 
fundamental blocks for observation of the impossibility of a reli-
able remote explainability or its hardness for multiple queries are 
then presented. We next present the bouncer problem, which users 
have to solve to detect malicious explanations by the remote service 
provider. We then illustrate the PR attack, which the malicious pro-
vider may execute to remove discriminative explanations to users, 
on decision trees. The bouncer problem is addressed practically by 
modelling a user trying to find inconsistencies from provider deci-
sions based on the German Credit dataset and a neural network 
classifier. We also discuss open problems, before reviewing related 
works and conclusions. Because we show that remote explainabil-
ity in its current form is undermined, this work aims to motivate 
researchers to explore the direction of provable explainability by 
designing new protocols (such as with cryptographic means, for 
example, in proof of ownership for remote storage) or to build col-
laborative observation systems to spot inconsistencies and mali-
cious explanation systems.

Explainability of remote decisions
In this Article, we study classifier models, which issue decisions 
given user data. We first introduce the set-up in which we operate, 
which is intended to be as general as possible, so that the results 
drawn from it can apply widely.

General set-up. We consider a classifier C : X7!Y
I

 that assigns 
inputs x of the feature space X

I
 to a class CðxÞ ¼ y 2 Y

I
. Without 

loss of generality and to simplify the presentation, we will assume 
the case of a binary classifier: Y ¼ f0; 1g

I
; the decision is thus the 

output label returned by the classifier.

Discriminative features and classifiers. To produce a decision, clas-
sifiers rely on features as an input. These are, for instance, the vari-
ables associated to a user profile on a given service platform (for 
example, basic demographics, political affiliation, purchase behav-
iour and residential profile13). In our model, we consider that the 
feature space contains two types of feature: discriminatory and 
legitimate. The use of discriminatory features allows for exhibiting 
the possibility of a malicious service provider issuing decisions and 
biased explanations. This problematic is also referred to as ‘rational-
ization’ in ref. 16.

Concretely, and for the sake of our demonstration, we consider 
discriminatory features to be an arbitrary subset of the input fea-
tures, such that we can define these as ‘any feature set the malicious 
service provider does not want to explain’. Two main reasons come 
to mind:

•	 Legal: the jurisdiction’s law forbids decisions based on a list 
of criteria (for example, in the UK, see https://www.gov.uk/
discrimination-your-rights). A service provider risks prosecu-
tion on admitting the use of these. For instance, features such as 
age, sex, employment or the status of foreigner are considered 
as discriminatory in ref. 17; this examines the German Credit 

dataset, which links bank customer features to the accordance 
or not of a credit.

•	 Strategic: the service provider wants to hide the use of some 
features on which its decisions are based. This could be to hide 
some business secret from competitors (for instance, because 
of the accuracy–fairness trade-off18), to avoid ‘reward hacking’ 
from users biasing this feature or simply to avoid bad press.

•	 Conversely, any feature that is not discriminatory is coined ‘legit’.

Formally, we partition the classifier input space X
I
 along these 

two types of feature: legitimate features Xl that the model can legiti-
mately exploit to issue a decision and discriminatory features Xd 
(Fig. 1). In other words X ¼ ðX l;XdÞ

I
, and any input x 2 X

I
 can 

be decomposed as a pair of legitimate and discriminatory features 
x = (xl, xd) (the introduction of such a split in the features is required 
to build our analysis). We assume the input contains at least one 
legitimate feature: Xl≠;

I
.

We also partition the classifier space accordingly: let Cl  C
I

 be 
the space of legitimate classifiers (among all classifiers C) that do not 
rely on any feature of Xd to issue a decision. More precisely, we con-
sider that a classifier is legitimate if and only if arbitrarily changing 
any discriminative input feature never changes its decision:

C 2 Cl () 8xl 2 Xl; 8xd; x0d 2 X 2
d;Cððxl; xdÞÞ ¼ Cððxl; x0dÞÞ

Observe, therefore, that any legitimate classifier Cl can simply be 
defined over input subspace Xl  X

I
. As a slight notation abuse to 

stress that the value of discriminative features does not matter in 
this legitimate context, we write Cððxl; ;ÞÞ

I
, or C(x ∈ Xl), as the deci-

sion produced, regardless of any discriminative feature. It follows 
that the space of discriminative classifiers complements the space of 
legitimate classifiers: Cd ¼ C n Cl

I
.

We can now reframe the main research question we address: 
Given a set of discriminative features Xd, and a classifier C, can we 
decide if C 2 Cd

I
 in the remote blackbox interaction model?

The remote blackbox interaction model. We question the ‘remote 
blackbox interaction’ model (see, for example, ref. 19), where the 
classifier is exposed to users through a remote application program-
ming interface (API). Users can only query the classifier model with 
an input and obtain a label as an answer (for example, 0 or 1). In 
this remote set-up, users then cannot collect any specific informa-
tion about the internals of the classifier model, such as its architec-
ture, its weights or its training data. This corresponds to a security 
threat model where two parties are interacting with each other 
(the user and the remote service) and where the remote model is 
implemented on a server belonging to the service operator, which is 
untrusted by the user.

Feature space

d

l

Classifier space Decision

d

l
2

1

Fig. 1 | illustration of our model. We consider binary classifiers, which map 
the input domain X

I
 to labels Y ¼ f0; 1g

I
. Some dimensions of the input 

space are discriminative, Xd, which induces a partition on the classifier 
space. Legitimate classifiers Cl

I
 do not rely on discriminative features  

to issue a label (in green), while others (that is, Cd
I

) can rely on any  
feature (in red).
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Requirements for remote explainability. Explainability is often 
presented as a solution to increase the acceptance of artificial intelli-
gence (AI)6 and to potentially prevent discriminative AI behaviour. 
Let us expose the logic behind this connection.

Explanations using conditional reasoning. First, we need to define 
what is an explanation, to go beyond Miller’s definition as an ‘answer 
to a why-question’20. Because the topic of explainability is becoming 
a hot research field with (to the best of our knowledge) no consensus 
on a more technical definition of an explanation, we will propose, 
for the sake of our demonstration, that an explanation is causally 
coherent with respect to the modus ponens rule from deductive rea-
soning (‘if A is implying B, and A being true, B is true as well’)21. 
For instance, if explanation a explains decision b, it means that in 
context a, the decision produced will necessarily be b. In this light, 
we first directly observe the beneficial effect of such explanations on 
our parallel to club bouncing. While refusing someone, the bouncer 
may provide reasons for that rejection. The person can then change 
their behaviour so as to be accepted on the next attempt.

Second, this modus ponens explanation form is also sufficient to 
prove non-discrimination. For instance, if a does not involve dis-
criminating arguments (which can be checked by the user as a is a 
sentence), and a ⇒ b, then decision b is not discriminative. On the 
contrary, if a does involve discriminating arguments (for simplicity, 
we leave aside the fact that some features might proxy some oth-
ers22—in particular discriminative ones; indeed, if even when listing 
all features, one cannot assess discrimination, then the problem is 
even harder due to correlations and those proxies), then decision b 
is taken on a discriminative basis and is therefore a discriminative 
decision. In other words, this property of an explanation is enough 
to reveal discrimination.

To sum up, any explanation framework that behaves ‘logically’ 
(that is, fits the modus ponens21)—which is in our view a rather 
mild assumption—is enough to establish the discriminative basis of 
a decision. We believe this is the rationale of the statement ‘trans-
parency can improve users trust in AI systems. In fact, this logical 
behaviour is not only sufficient to establish discrimination, it is also 
necessary: assume a framework providing explanation a for deci-
sion b such that we do not have a ⇒ b. Because a and b are not con-
nected anymore, a does not bring any information about b.

Although this logical behaviour is desirable for users, unfortu-
nately, in a remote context they cannot check whether a ⇒ b is in 
general true because they are only provided with a particular expla-
nation a leading to a particular decision b. They cannot check that a 
being true leads in all contexts to b being true.

Requirements on the user side for checking explanations. In a nut-
shell, a user in a remote interaction can verify that in her context a 
is true and b is true, which is compatible with the a ⇒ b relation of 
an explanation fitting the modus ponens. Let us formalize what a 
user can check regarding the explanation she collects. A user who 
queries a classifier C with an input x gets two elements: the decision 
(inferred class) y = C(x) and an explanation a such that a explains 
y. To produce such explanations, we assume the existence of an 
explanation framework expC producing explanations for classifier C 
(this could, for instance, be the LIME framework10). Formally, upon 
request x, a user collects y and a = expC(y,x) explaining decision y in 
context x by classifier C.

We assume that such a user can check that a is apropos (that 
is, appropriate): a corresponds to input x. We write a ∈ A(x). This 
allows us to formally write a non-discriminatory explanation as 
a ∈ A(xl). This forbids lying by explaining an input that is different 
from x.

We also assume that the user can check the explanation is  
consequent: the user can check that a is compatible with y.  
This forbids crafting explanations that are incoherent w.r.t. the  

decision (like a bouncer explaining why you can enter while leaving 
the door locked).

Having defined the considered model for constructing and 
exposing our results, we stress that this model aims at constraining 
the provider as much as possible. In particular, explanations must be 
as complete as possible, must always be provided and must always 
be coherent with the decision. The intuition is that if we prove the 
possibility of malicious explanations even in this constrained case, 
then in all less constrained cases (such as for incomplete explana-
tions as observed in ref. 13 or example-based explanations), the 
trickery will only be easier.

To sum up for the explanation model: explanations fitting the 
modus ponens allow users to detect discrimination. Unfortunately, 
in a remote context, users cannot check whether explanations do 
fit the modus ponens. However, they can check the veracity of the 
explanation and the decision in their particular experience. This is 
the space we exploit for our attack, by generating malicious explana-
tions that appear correct to the user (but that do not fit the modus 
ponens).

The PR attack or the limits of remote explainability. We articulate 
our demonstration of the limits of explainability in a remote set-up 
by showing that a malicious service provider can hide the use of 
discriminating features for issuing its decisions, while conforming 
to the mild explainability framework we described.

Such a malicious provider thus wants to (1) produce decisions 
based on discriminative features and (2) produce non-discriminatory 
explanations to avoid prosecution. A first approach could be to 
manipulate the explanation directly. However, it might be dif-
ficult to do so while keeping the explanation convincing and true 
in an automated way. In this Article, we follow another strategy  
that instead consists in creating a legitimate classifier that will then 
be explained.

A generic attack against remote explainability. We coin this attack 
the public relations (PR) attack. The idea is rather simple: on recep-
tion of an input x, first compute the discriminative decision C(x). 
Then train a surrogate model C0

I
 that is non-discriminative and such 

that C0ðxÞ ¼ y
I

. Explain C0ðxÞ
I

, and return this explanation along 
with C(x).

Figure 2 illustrates a decision based solely on legitimate features 
(Fig. 2a), a provider giving an explanation that includes discrimina-
tory features (Fig. 2b) and the attack by a malicious provider (Fig. 2c).  
In all three scenarios, a user is querying a remote service with inputs 
x, and obtaining decisions y, each along with an explanation. In the 
case of Fig. 2b, the explanation expC reveals the use of discriminative 
features Xd; this provider is prone to complaints. To avoid these, the 
malicious provider (Fig. 2c) leverages the PR attack, by first com-
puting C(x) using its discriminative classifier C. Then, based on the 
legitimate features xl of the input, and its final (discriminative) deci-
sion y, it derives a classifier C0

I
 for the explanation. Core to the attack 

is the ability to derive such a classifier C0

I
.

Informally, coherence ensures that the explanation (derived  
from C0

I
) appears consequent to the user observing decision y, 

while legitimacy ensures that the explanation will appear to the 
user as originating from the modus ponens explanation of a 
non-discriminating classifier.

Effectiveness of the attack. Let us consider the perspective of a user 
who, upon request x, collects a y answer along with an explanation a. 
Observe that a ¼ expC0 ðy; xÞ

I
 is apropos because it directly involves 

x: a ∈ A(x). Because we have C0ðxÞ ¼ y
I

 it is also consequent. Finally, 
given that C0 2 Cl

I
, then a ∈ A(xl): a is non-discriminatory. So, from 

the user perspective, she collects an apropos and consequent expla-
nation that could originate from the logical explanation of a legiti-
mate classifier.
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Existence of the attack. We note that crafting a classifier C0

I
  

satisfying the first property is trivial because it only involves a sin-
gle data point x. An example solution is the Dirac delta function of  
the form

C0ðx0Þ ¼ C0ððx0l; x0dÞÞ ¼
δx0l ;xl if y ¼ 1
1� δx0l ;xl if y ¼ 0

�

where δ is the Dirac delta function. Informally, this solution corre-
sponds to defining the classifier that would only answer bounce to 
this specific input x, and answer enter to any other input.

Although a corresponding intuitive explanation could be 
‘because it is specifically you’, explaining this very specific function 
might not fit any explainability framework. To alleviate this con-
cern, we provide an example implementation of a PR attack that 
produces legitimate decision trees from discriminating ones in the 
section ‘Illustration using decision trees’.

Dirac here only constitutes an example proving the existence of 
PR attack functions. It is important to realize that many such C0

I
 PR 

attack functions exists (any function Xl 7!Y
I

 that satisfies the easy 
C0ðxÞ ¼ y
I

 condition).
In other words, PR attack functions are easy to find: if one could 

sample Cl
I
 uniformly at random, because C0ðxÞ ¼ y

I
 is equally likely 

as C0ðxÞ ¼ �y
I

, each sample would yield a PR attack function with 
probability 1/2.

We have presented the framework and an attack necessary to 
question the possibility of remote explainability. We next discuss 
the possibility for a user to spot that an explanation is malicious and 
obtained by a PR attack. We stress that if a user cannot, then the very 
concept of remote explainability is at stake.

Definition 1. PR attack. Given an arbitrary classifier C 2 Cd
I

, a PR 
attack is a function that finds for an arbitrary input x a classifier C0

I
:

PR ðC; x;CðxÞÞ ! C0 ð1Þ

such that C0

I
 satisfies two properties:

•	 coherence: C0ðxlÞ ¼ y
I•	 legitimacy: C0 2 Cl
I

Proposition 1. Let Cl : Xl 7!Y ¼ f0; 1g
I

 be the set of all possible legit 
classifiers, and its cardinality be jClj

I
. Let PR  Cl

I
 be the set of pos-

sible PR attack functions. We have jPRj ¼ jClj=2
I

: half of all possible 
legit classifiers are PR attack functions.

Proof. Pick xl ∈ Xl and y = C(x) the decision with which our PR attack 
function must be coherent. Because Cl

I
 is a set of functions defined 

over Xl, any particular function C in Cl
I
 is defined at xl. Let us partition 

the function space Cl
I
 according to the value these functions take at 

xl: let A : fC 2 Cl s:t: CðxlÞ ¼ yg
I

 and B : fC 2 Cl s:t: CðxlÞ ¼ yg
I

. 
We have Cl ¼ A∪B

I
. Let not : A7!B

I
 be a ‘negation function’ that 

associates for each function C 2 A
I

 its negation notðCÞ 2 B
I

 s.t. 
not(C)(x) = 1 − C(x). Observe that not∘not = Id: not defines a bijec-
tion between A

I
 and B

I
 (any function in A has exactly one unique 

corresponding function in B
I
 and vice versa). Because not is a bijec-

tion, we deduce jAj ¼ jBj ¼ jClj=2
I

. Given that A
I
 contains all pos-

sible legitimate functions (A  Cl
I

) that are coherent with C(xl) = y, 
A ¼ PR
I

. Thus jPRj ¼ jClj=2
I

. □

The bouncer problem
We presented in the previous section a general set-up for remote 
explainability. We now formalize our research question regarding 
the possibility of a user spotting an attack in that set-up.
Definition 2. The bouncer problem (BP). Using ϵ requests that each 
returns a decision yi = C(xi) and an explanation expC(yi, x), decide if 
C 2 Cd
I

. We denote that action by BP(ϵ).

An observation for one-shot explanations. As a first step analysis 
in this set-up, we show that an attack cannot be spotted in the case 
of one-shot explanations. We already know that using a single input 
point is insufficient.

Observation 1. BP(1) has no solution.
Proof. The Dirac construction above always exists. □
Indeed, constructions like the introduced Dirac function  

form a PR attack that produces explainable decisions. Given a sin-
gle explanation on model C0

I
 (that is, ϵ = 1), a user cannot distin-

guish between the use of a model (C in Fig. 2, case (a)) or one of 
a model crafted by a PR attack (C0

I
 in Fig. 2, case (c)), because it is 

consequent. This means that such a user cannot spot the use of hid-
den discriminatory features due to the PR attack by the malicious 
provider.

We observed that a user cannot spot a PR attack with BP(1). 
This is already problematic, as it gives a formal proof of why the 
Facebook ad explanation system cannot be trusted13.

The hardness of multiple queries for explanation. To address the 
case BP(ϵ > 1), we observe that a PR attack generates a new model C0

I
 

for each request; as a consequence, an approach to detect that attack 
is to detect the impossibility (using multiples queries) of a single 
model C0

I
 to produce coherent explanations for a set of observed 

decisions. Here, we study this approach.

x = (xl, ∅) → yC

Remote

x y, expC (y, (xl, ∅))

User

a

x = (xl, xd) → yC

Remote

x y, expC (y, (xl, xd))

Discriminated user

b

(xl, xd) → yC

PR(C, (xl, xd), y ) → C′

s.t. C′(xl) = y

x y, expC′(y, (xl, ∅))

Discriminated
& fooled user

c

Fig. 2 | The three scenarios involving remote explainability. a, A provider using a model that does not leverage discriminatory features. b, A discriminative 
model divulges its use of a discriminating feature. c, the PR attack principle, undermining remote explainability: the blackbox builds a surrogate model C0

I
 

for each new request x, which decides y based on xl features only. It explains y using C0
I
.
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Interestingly, classifiers and bouncers share this property that 
their outputs are all mutually exclusive (each input is mapped to 
exactly one class). Thus we have enter ) bounce

I
 (with enter 

and bounce being the positive or negative decision to enter a place, 
for instance). In this case it is impossible to have a ⇒ enter and 
a ⇒ bounce. Note that this relation assumes a ‘logical’ explainer. 
On a non-logical explainer, because we cannot say a ⇒ enter 
given a and enter, we cannot detect such an attack. Note also that 
non-mutually exclusive outputs (for example, in the case of recom-
menders where recommending item a does not imply not recom-
mending item b) are not bound by this rule.

A potential problem for the PR attack is a decision conflict, 
in which a could explain both b and �b, its opposite. For example, 
imagine a bouncer refusing you entrance to a club because, say, you 
have white shoes. Then, if the bouncer is coherent, he should refuse 
entrance to anyone wearing white shoes, and if you witness some-
one entering with white shoes, you could argue against the lack of 
coherence of the bouncer decisions. We build on these incoherences 
to spot PR attacks.

To examine the case BP(ϵ), where ϵ > 1, we first define the notion 
of an ‘incoherent pair’ (IP).

Definition 3. Incoherent pair (IP). Let 
x1 ¼ ðx1l ; x1dÞ; x2 ¼ ðx2l ; x2dÞ 2 X ¼ Xl ´Xd

I
 be two input points in 

the feature space (with × denoting the Cartesian product). x1 and 
x2 form an IP for classifier C if they both have the same legit feature 
values in Xl and yet end up being classified differently:

x1l ¼ x2l ^ Cðx1Þ≠Cðx2Þ
I

. For convenience we write (x1, x2) ∈ IPC.
Finding such an IP is a powerful proof of PR attack on the model 

by the provider: only decisions resulting from a model crafted by 
a PR attack can exhibit IPs: IPC≠; ) C 2 Cd

I
. Intuitively, this is a 

formalization of an intuitive reasoning: ‘if you let others enter with 
white shoes then this was not the true reason for my rejection’.

We can show that there is always a pair of inputs allowing us to 
detect a discriminative classifier C 2 Cd

I
.

Proposition 2. A classifier C0

I
, resulting from a PR attack, always 

has at least one IP: C0 2 Cd ) IPC≠;
I

.
Proof. We prove the contrapositive form IPC ¼ ; ) C=2Cd

I
. 

Informally, the strategy here is to prove that if no such pair exists, 
this means that decisions are not based on discriminative features in 
Xd, and thus the provider had no interest in conducting a PR attack 
on the model; the considered classifier is not discriminating.

Assume that IPC ¼ ;
I

. Let x; 2 Xd

I
, and let Cl : Xl 7!Y

I
 be a legiti-

mate classifier such that ClðxlÞ ¼ Cððxl; x;ÞÞ
I

.
Since IPC ¼ ;

I
, this means that 

8x1; x2 2 X ; x1l ¼ x2l ) Cðx1Þ ¼ Cðx2Þ
I

. In particular 
8x 2 X ;Cðx ¼ ðxl; xdÞÞ ¼ Clðxl; x;Þ
I

. Thus C = Cl; by the definition 
of a PR attack being only applied to a model that uses discrimina-
tory features, this leads to C 2 C n Cd

I
, that is, C=2Cd

I
. □

This directly applies to our problem.
Proposition 3. Detectability lower bound. BPðjXjÞ

I
 is solvable.

Proof. Straightforward: C0 2 Cd ) IPC≠;
I

, and since IP  X ´X
I

, 
testing the whole input space will necessarily exhibit such an IP. □

This last result is rather weakly positive. Even though any PR 
attack is eventually detectable, in practice it is impossible to exhaus-
tively explore the input space of modern classifiers due to their 
dimension. This remark also further questions the opportunity of 
remote explainability.

Moreover, it is important to observe that while finding an IP 
proves the presence of a PR attack, it is not an efficient technique to 
prove the absence of a PR attack, which is probably the use case that 
most interests users. The section ‘Finding IPs on a neural network 
model’ details this approach on a concrete dataset.

This concludes the theoretical perspective of this Article. To sum 
up, an explainer that could allow spotting classifier discrimination 
should behave logically; this is what is expected by users. However, 
they can only check the properties of the provided explanation 

with regard to input x, which leaves room for malicious providers. 
One such provider can just create a legit explainer whose decision 
matches the discriminative one for input x. Fortunately, this tech-
nique can be detected. However, this detection is difficult in prac-
tice, as we will illustrate next.

illustration and experiments
In this section, we instantiate concretely some of the points raised by 
our theoretical perspective. We first illustrate the ease of finding PR 
attack functions on binary decision trees by presenting an algorithm 
that implements one. We then focus on detection, and evaluate in 
practice the hardness of finding IPs on the German Credit dataset.

Illustration using decision trees. In this section, we embody the 
previous observations and approaches on the concrete case of deci-
sion tree classifiers. The choice of decision trees was motivated 
first because of its recognized importance (for example, with C4.5 
ranked number one of the top 10 data-mining algorithms23). Second, 
there is a wide consensus on their explainability, which is straight-
forward8: a path in the tree ‘naturally’ lists the attributes considered 
by the algorithm to establish a classification. Finally, the simplicity 
of crafting PR attacks on these makes them good candidates for an 
illustration and argues for the practical implementability of such an 
attack.

We denote T
I
 as the set of tree-based classifiers. We do not need 

any assumption on how the tree is built (for example, C4.524). 
Regarding explainability, we here only need to assume that decision 
trees are explainable: 8C 2 T ; expC

I
 exists.

Let C 2 T \ Cd
I

 be a discriminatory binary tree classifier. Each 
internal node n ∈ V(C) tests incoming examples based on a feature 
n.label. Each internal node is connected to exactly two sons in the 
tree, named n.right and n.left. Depending on the (binary) result 
of this test, the example will continue on either of these paths. We 
denote the father of an internal node by n.father (the root node r is 
the only node, such that r:father ¼ ;

I
).

Algorithm 1 presents a PR attack on binary decision trees. To 
ease its presentation, we assume that given an input x, n.right will by 
convention always be the branch taken after evaluating x on n. The 
algorithm starts by initializing the target decision tree C0

I
 as a copy 

of C. Then, it selectively removes all nodes involving discriminative 
features, and replaces them with the subtree the target example x 
would take.

Algorithm 1. PR attack on a discriminative decision binary tree C.
Input: C, x = (xl, xd)
y = C(x); // Find discriminative decision
Let {n0,…nt} be the breadth first ordering of the
 nodes of C;
Let C0 ¼ C

I
; // Initialise surrogate

for node i = 0 to t do
 if ni.label ∈ Xd then
  C0.ni.father.right ¼ ni.right

I
; // Reconnect

  ni father to right son
  C0 ¼ C0 n fnig

I
; // Remove discriminating

  node
  C0 ¼ C0 n fni:left subtreeg

I
; // Remove left

  subtree
 else
  C0:ni:left ¼ �y

I
; // Keep legit node, add

  dummy terminal node
 end
end
return y; expC0 ðy; ðxl; ;ÞÞ

ITo do so, Algorithm 1 removes each discriminative node ni by 
connecting ni − 1 and ni + 1. Although this approach would be prob-
lematic in the general case (we would lose the ni.left subtree),  
in the context of x we know the explored branch is ni.right, so 
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we simply reconnect this branch and replace the left subtree by a 
dummy output.

Proposition 4. Algorithm 1 implements a PR attack.
Proof. To prove the statement, we need to prove that

•	 C0

I
 is legitimate

•	 C0

I
 is coherent: C0ðxlÞ ¼ y

I•	 C0

I
 is explainable

First, observe that any nodes of C0

I
 containing discriminative fea-

tures are removed (line 7). Thus, C0

I
 only takes decisions based on 

features in Xl: C0

I
 is legitimate.

Second, observe that, by construction, since x = (xl,xd) and 
since any discriminative node n is replaced by this right (n.right) 
outcome, which is the outcome that corresponds to xd. In other 
words, 8x0l 2 Xl;C0ðx0lÞ ¼ Cððx0l; xdÞÞ

I
: C0

I
 behaves like C where dis-

criminative features are evaluated at xd. This is true in particular for 
xl : C0ðxlÞ ¼ Cððxl; xdÞÞ ¼ CðxÞ ¼ y
I

.
Finally, observe that C0

I
 is a valid decision tree. Therefore, accord-

ing to our explainability framework, C0

I
 is explainable. □

Interestingly, the presented attack can be efficient as it only 
involves pruning part of the target tree. In the worst case, this one 
has Ω(2d) elements, but, in practice, decision trees are rarely that 
big.

A simple example. An example is presented in Fig. 3 of a classifier C 
that uses three features—the fact that persons are disguised or not, 
the fact that they wear pink socks or not and their age—to decide 
whether or not they can enter a place. A malicious service provider 
using that discriminative classifier is queried using input x. This 
classifier is shown on the left and exploits a single discriminative 
(binary) dimension of x: ‘Age < 60’.

Let us consider that exp is a canonical explanation framework 
that, given a decision tree C and an input x, translates into words 
the path taken by x through C down to the decision leaf. In such 
a framework, if x represents a disguised individual over 60, C(x) is 
bounce and the explanation expC(C(x), x) would be ‘You cannot enter 
because we do not let in disguised people over 60’—corresponding 
to the path (Y,N) in C that effectively reveals the discrimination.

Instead of replying the explanation expC(C(x),x), the mali-
cious provider implements a PR attack as follows. It computes the  

discriminative decision C(x), but generates an explanation using a 
classifier C0

I
 derived by removing the discriminative features of C 

(using Algorithm 1).
Using the same ‘disguised over 60’ input x in this PR attack con-

text (1) yields the original decision C(x) but (2) yields an explana-
tion based on the Fig. 3c classifier C0ðxlÞjxd≥60

I
. In this classifier, 

the path for xl is only (Y), which is explained by exp as ‘You cannot 
enter because we do not let in disguised people’.

As a second example, consider an x0
I
 that represents someone 

disguised but under 60. This input yields a different decision Cðx0Þ
I

 
(enter, path (Y,Y)). Using Algorithm 1 again, a new classifier C0

I
 is 

generated. This C0ðx0lÞjx0d<60
I

 is the Fig. 3b classifier, in which the 
path corresponding to x0

I
 is (Y), which is explained by exp as ‘You 

can enter because we allow disguised people’. (In general, we can-
not guarantee that the provided explanation makes sense to the 
user. Exploiting this information might provide additional room 
for detecting malicious explanations in some practical settings. 
However, because C′ is derived from C, the provided explanation 
expC′ is probably as credible as expC to the user, unless C′ is very dif-
ferent from C due to a high discrimination ratio.)

As shown, both x and x0
I
 yield non-discriminative explanations 

for a discriminative decision.
In this example, comparing both versions of C0

I
 easily yield solu-

tions for BP(2), for example (disguised, whitesocks, 
Age = 49) and (disguised, whitesocks, Age = 62).

PR attacks on purely discriminative classifiers. We now elaborate on 
an extreme case that is challenging for constructing a PR attack, 
namely a discriminative decision tree containing only discrimina-
tive nodes. For example, consider C: if (gender = male) then enter 
else bounce, being a discriminative classifier that rejects individuals 
based only on their gender. It can be represented by a decision tree 
containing a single discriminative node. As our input space contains 
only two possible values (male and female), Algorithm 1 generates 
only two legit classifiers C0ðxjx ¼ maleÞ

I
 leading to an enter deci-

sion, and C0ðxdjxd ¼ femaleÞ
I

 leading to bounce. Both legit surro-
gates only contain a single decision node, which could correspond 
to explanations like ‘We always let everyone in’ and ‘We never let 
anyone in’.

In this case, any mixed couple of inputs (female, male) con-
stitutes an IP. Therefore, assuming female and male inputs are 

Disguised?

a
:)(

Age < 60 Wears pink
socks?

enter bounce
enter bounce

Y N

Y N
Y N

Disguised?

b
′( l)∣ d < 60 :

≥ 60 :

Wears pink
socks?enter

enter bounce

NY

Y N

Disguised?

c

Wears pink
socks?bounce

enter bounce

NY

Y N

′( l)∣ d

Fig. 3 | illustration of a possible implementation (algorithm 1) of the PR attack. a–c, Instead of having to explain the use of a discriminative feature (age 
in this case) in classifier C in a, two non-discriminative classifiers (C0

I
 in b and c) are derived. Depending on the age feature in the request, a C0

I
 is then 

selected to produce legit explanations. the two dashed circles represent an IP, which users might seek to detect a malicious explanation.
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equally likely, the probability of a random pair of inputs to consti-
tute an IP is 1/2. Although such a discriminative model is unlikely 
to be placed in production, this examples stresses the detection ease 
of PR attacks in that extreme case.

Finding IPs on a neural network model. We now take a closer look 
at the detectability of the attack, namely, how difficult is it to spot 
an IP?

For the experimental set-up we leveraged Keras over TensorFlow 
to learn a neural network-based model for the German Credit data-
set25. Although we could have used any relevant type of classifier for 
our experiments, the general current focus is on neural networks 
for explainability. The bank dataset classifies client profiles (1,000 of 
them), described by a set of attributes, as good or bad credit risks. 
Multiple techniques have been employed to model the credit risks 
on that dataset, which range from 76.59% accuracy for a support 
vector machine to 78.90% for a hybrid between a genetic algorithm 
and a neural network26.

The dataset is composed of 24 features (some categorical 
ones, such as sex, were set to numerical). This thus constitutes a 
low-dimensional dataset compared to current applications (obser-
vations in ref. 13 reported up to 893 features for the sole application 
of ad placement on user feeds on Facebook). Furthermore, mod-
ern classifiers are currently dealing with up to 512 × 512 × 3 dimen-
sions27; this shows a significant increase in data processing and thus 
the capability to expand the number of features taken into account 
for decision making.

Our neural network (code is available at https://github.com/
erwanlemerrer/bouncer_problem) is inspired by the one proposed28 
in 2010, which reached 73.17% accuracy. It is a simple multilayer 
perceptron with a single hidden layer of 23 neurons (with sigmoid 
activations) and a single output neuron for binary classification 
of the input profile to ‘risky’ or not. In this experiment we use the 
Adam optimizer and a learning rate of 0.1 (leading to much faster 
convergence than in ref. 28), with a validation split of 25%. We create 
30 models, with an average accuracy of 76.97%@100 epochs on the 
validation set (with a standard deviation of 0.92%).

To generate input profiles, we consider two scenarios. In scenario 
A, a user sets a random value in a discriminative feature to try to find 
an IP. This yields rather artificial user profiles (which may be detected 
as such by the remote service provider). To obtain an aggregated view 
of this scenario, we proceed as follows. For each of the 30 models, 
we randomly select 50 users as a test set (not used for training the 
previous models). We then repeat the following 500 times: we select 
a random user among the 50 and select a random discriminative fea-
ture among four to set a random (uniform) value in it (belonging to 
the domain of each selected feature, for example, from 18 to 100 in 
the age feature). This creates a set of 15,000 fake profiles as inputs.

In scenario B, to obtain a more realistic scenario where profiles are 
created from real data from the dataset, we now proceed as follows. 
We also select 50 profiles from the dataset as a test set, so we can per-
form our core experiment: the four discriminatory features of each of 
these profiles are sequentially replaced by those of the 49 remaining 
profiles, and each resulting test profile is fed to the model for predic-
tion. (This permits us to test the model with realistic values in these 
features, and the process creates 2,450 profiles to search for an IP.) We 
count the number of times the output risk label has switched, as com-
pared to the original untouched profile fed to the model. We repeat 
this operation on the 30 models to observe deviations.

We note that as IPs can be found solely using the decisions pro-
vided by the classifier (see Definition 3), we do not need to rely 
on an explanation framework (such as, for example, LIME) in the 
experiments.

The low probability of findings IPs at random. In the case of sce-
nario A, we compare the original label with the one obtained from 

each crafted input. Recall that a label change while considering two 
inputs constitutes an IP. We obtain 8.09% of IPs (standard deviation 
of 4.08).

Figure 4 depicts, for scenario B, the proportion of label changes 
over the total number of test queries. If we change just one of the 
four features, we obtain, on average, 1.86%, 0.27%, 1.40% and 2.27% 
label changes (for employment, sex/status, age and foreigner fea-
tures, respectively), while simultaneously changing four features 
gives a probability of 4.25%. The standard deviations are 1.48%, 
0.51%, 1.65%, 2.17% and 3.13%, respectively.

This probability of 4.25% is higher than our deterministic lower 
bound BPðjXjÞ

I
 (Proposition 3), hinting that this discriminating 

classifier is easier to spot that the worst-case one. Moreover, because 
not finding an IP after some requests does not guarantee the absence 
of a discriminating behaviour, we now look at the user-side per-
spective: testing the absence of discrimination of a remote service. 
It turns out that we can compute an expectation of the number of 
queries for such a user to find an IP.

Users can query the service with inputs, until they are confident 
enough that such a pair does not exist. Assuming one seeks a 99% 
confidence level—that is, fewer than 1% of chances to falsely judge 
a discriminating classifier as non-discriminating—and using the 
detection probabilities of Fig. 4, we can compute the associated P 
values. A user testing a remote service based on these hypotheses 
would need to craft, respectively, 490, 2,555, 368, 301 and 160 pairs 
(for employment, sex/status, age, foreigner and all four, respectively) 
in the hope to decide on the existence or not of an IP, as presented in 
Fig. 5 (note the log scale on the y axis).

These experiments highlight the hardness of experimentally 
checking for PR attacks using intuitive approaches. Yet, we cannot 
claim that there are no efficient input space exploration strategies 
for finding IPs in a more practical way. This is certainly an interest-
ing topic for future work.

Discussion
In this section we describe several consequences of the findings of 
this Article and some open questions.

Findings and applicability. We have shown that a malicious pro-
vider can always craft a fake explanation to hide its use of discrimi-
natory features by creating a surrogate model for providing an 
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Fig. 4 | Percentage of label changes when swapping the discriminative 
features in the test set data for scenario B. Bars indicate standard 
deviations. these indicate the low probability to spot a PR attack on the 
provider model.
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explanation to a given user. An impossibility result follows, for a 
user to detect such an attack while using a single explanation. The 
detection by a user, or a group of users, is possible only in the case 
of multiple and deliberate queries (BP(ϵ > 1)), and this process may 
require an exhaustive search of the input space.

However, we see that our practical experiment on the German 
Credit dataset is far from this complexity. Intuitively, the probabil-
ity of finding an IP is proportional to the ‘discrimination level’ of 
a classifier. Although quantifying such a level is a difficult task, we 
explore a possible connection in the next section.

We note that the malicious providers have another advantage 
for covering PR attacks. Because multiple queries must be issued to 
spot inconsistencies via IP pairs, basic rate-limiting mechanisms for 
queries may block and ban the incriminated users. Defences of this 
kind, for preventing attacks on online machine services exposing 
APIs, are being proposed29. This adds another layer of complexity 
for the observation of misbehaviour.

Connection with disparate impact. We now briefly relate our 
problem to disparate impact. A recent article30 proposed adopting 
‘a generalization of the 80 percent rule advocated by the US Equal 
Employment Opportunity Commission (EEOC)’ as a criterion  
for disparate impact. This notion of disparate impact proposes to 
capture discrimination through the variation of outcomes of an 
algorithm under scrutiny when applied to different population 
groups.

More precisely, let α be the disparity ratio. The authors propose 
the following formula, here adapted to our notation30:

α ¼ Pðyjxd ¼ 0Þ
Pðyjxd ¼ 1Þ

where Xd = {0, 1} is the discriminative space reduced to a binary dis-
criminatory variable. Their approach is to consider that if α < 0.8 
then the tested algorithm could be qualified as discriminative.

To connect disparate impact to our framework, we conduct the 
following strategy. Consider a classifier C having a disparate impact 
α, and producing a binary decision C(x) ∈ {0 = bounce, 1 = enter}. 
We search for IPs as follows: first, pick x ∈ Xl, a set of legit features. 
Then take a = (x,xd = 0), representing the discriminated group, and 
b = (x,xd = 1), representing the undiscriminated group. Then test C 
on both a and b: if C(a) ≠ C(b) then (a,b) is an IP. The probability 
P
I
 of finding an IP in this approach can be written as PðIPÞ

I
. Let A 

(resp. B) be the event ‘a enters’ (resp. ‘b enters’).

We can develop

PðIPÞ ¼ PðCðaÞ≠CðbÞÞ
¼ PðA \ BÞ þ PðA \ BÞ
¼ PðAÞ � PðA \ BÞ þ PðBÞ � PðA \ BÞ
¼ PðBÞð1þ αÞ � 2PðA \ BÞ; because α ¼ PðAÞ=PðBÞ

Using conditional probabilities, we have PðA \ BÞ ¼ PðBjAÞ:PðAÞ
I

. 
Thus PðIPÞ ¼ PðBÞð1þ α� 2α:PðBjAÞÞ

I
. Given that the conditional 

probability PðBjAÞ
I

 is difficult to assess without further hypotheses 
on C, let us investigate two extreme scenarios:

•	 Independence: A and B are completely independent events, 
even though a and b share their legit features in Xl. This sce-
nario, which is not very realistic, could model purely random 
decisions with respect to attributes from Xd. In this scenario 
PðBjAÞ ¼ PðBÞ
I

.
•	 Dependence: A ⇒ B: if a is selected, despite its membership to 

the discriminated group (a = (x,0)), then necessarily b must be 
selected, as it can only be ‘better’ from C’s perspective. In this 
scenario PðBjAÞ ¼ 1

I
.

Figure 6 represents the numerical evaluation of our two sce-
narios. First, it shows that the probability of finding an IP strongly 
depends on the probability of a success for the non-discriminated 
group PðBÞ

I
. Indeed, because the discriminated group has an 

even lower probability of success, a low success probability for the 
non-discriminated group implies frequent cases where both a and b 
are failures, which does not constitute an IP.

In the absence of disparate impact (α = 1), both scenarios provide 
very different results: the independence scenario easily identifies 
IPs, which is coherent with the ‘random’ nature of the independence 
assumption. This underlines the unrealistic nature of the inde-
pendence scenario in this context. With a high disparate impact, 
however (for example, α = 0.1), the discriminated group has a high 
probability of failure. The probability of finding an IP is therefore 
very close to the simple probability of the non-discriminated group 
having a success PðBÞ

I
, regardless of the considered scenario.

The purely discriminative classifier presented in the sec-
tion ‘PR attacks on purely discriminative classifiers’ also con-
stitutes an extreme case with respect to disparate impact: 
α ¼ PðAja ¼ femaleÞ=PðBjb ¼ maleÞ ¼ 0
I

. In Fig. 6, the case α = 0 
is not represented, but it lies on the diagonal PðIPÞ ¼ PðBÞ

I
, regard-

less of the scenario. Because PðBÞ ¼ 1
I

 (males always enter), we 
deduce PðIPÞ ¼ 1

I
. In other words, testing any (male, female) couple 

spots the attack.
The dependence scenario nicely illustrates a natural connection: 

the higher the disparate impact, the higher the probability to find an 
IP. Although this only constitutes a thought experiment, we believe 
this highlights possible connections with standard discrimination 
measures and conveys the intuition that, in practice, the probability 
of finding IPs exposing a PR attack strongly depends on the inten-
sity of the discrimination hidden by that PR attack.

Open problems for remote explainability. Regarding the test effi-
ciency, it is common for fairness assessment tools to leverage testing. 
As the features that are considered discriminating are often pre-
cise11,17, the test queries for fairness assessment can be targeted and 
some notions of efficiency in terms of the amount of requests can 
be derived. This may be done by sampling the feature space under 
scrutiny, for instance (as in the work by Galhotra and colleagues11).

Yet, it appears that with current applications such as social net-
works13, users spend a considerable amount of time online, produc-
ing more and more data that turn into features and also are the basis 
for the generation of other meta-features. In that context, the full 
scope of features, discriminating or not, may not be clear to a user. 
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Fig. 5 | confidence level as a function of the number of tested input pairs, 
based on the German credit detection probability in Fig. 4. the dashed 
line represents the 99% confidence level.
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This makes exhaustive testing unreachable, even theoretically, due 
to the very likely non-complete picture of what providers are using 
to issue decisions. This is another challenge on the way to remote 
explainability—that providers are not willing to release a complete 
and precise list of all attributes leveraged in their system.

Another scenario is users sharing their observations for spotting 
discrimination, as is common in real life regarding bouncing issues. 
In practice, users can have a prior on which are discriminative inputs 
in specific applications and decide to coordinate for testing such a 
target application. By doing so, they collectively ‘build’ a surrogate 
model and coordinate its study, without ever relying on provided 
explanations. This approach bears some similarities with blackbox 
surrogate approaches, such as LIME (with the aim of finding IPs 
and for other benefits like fairness testing or model comparison). 
However, collecting uncoordinated user queries to span the entire 
input space is related to the coupon collector problem (requiring on 
the order of jXjlog ðjXjÞ

I
 independent user inputs). Although this 

solution might ultimately be the only one that holds, as in reality, its 
implementation is not straightforward as it raises privacy problems. 
In our example of the German Credit dataset, this would lead users 
to disclose sensitive data such as their savings or employment status.

Towards a provable explainability, some other computing appli-
cations, such as data storage or intensive processing, have also pre-
viously questioned the possibility of malicious service providers. 
Motivated by the plethora of offers in the cloud computing domain 
and the question of quality of service, protocols such as ‘proof of 
data possession’14 or ‘proof-based verifiable computation’31 assume 
that the service provider might be malicious. A solution to still have 
services executed remotely in this context is then to rely on crypto-
graphic protocols to formally verify the work performed remotely. 
To the best of our knowledge, no such provable process logic has 
been adapted to explainability. This is certainly an interesting devel-
opment to come.

Related work
Explaining in-house models. As a consequence of the major impact 
of machine learning models in many areas of our daily life, the 
notion of explainability has been pushed by policy makers and reg-
ulators. Many works address the explainability of inspected model 
decisions on a local set-up (see surveys in refs. 7,8,32)—some specifi-
cally for neural network models33—where the number of requests 
to the model is unbounded. Regarding the question of fairness, a 
recent work specifically targeted the fairness and discrimination of 
in-house software by developing a testing-based method11.

Dealing with remote models. The case of models available through 
a remote blackbox interaction set-up is particular, as external observ-
ers are bound to scarce data (labels corresponding to inputs, while 
being limited in the number of queries to the blackbox34). Adapting 
the explainability reasoning to models available in a blackbox set-up 
is of major societal interest: Andreou and others13 have shown that 
Facebook’s explanations for their ad platform are incomplete and 
sometimes misleading. They also conjecture that malicious service 
providers can ‘hide’ the sensitive features used by explaining deci-
sions with very common ones. In that sense, our Article is exposing 
the hardness of explainability in that set-up, confirming that mali-
cious attacks are possible. Milli and others35 provide a theoretical 
ground for reconstructing a remote model (a two-layer ReLu neu-
ral network) from its explanations and input gradients; if further 
research proves the approach practical for current applications, this 
technique may help to infer the use of discriminatory features by the 
service provider.

Operating without trust—the domain of security. In the domain 
of security and cryptography, some similar set-ups have found a 
large body of work to solve the trust problem. In proof of data pos-
session protocols14, a client executes a cryptographic protocol to 
verify the presence of her data on a remote server; the challenge that 
the storage provider responds to assesses the possession or not of 
some particular piece of data. Protocols can give certain or proba-
bilistic guarantees. In proof-based verifiable computation31, the 
provider returns the results of a queried computation, along with a 
proof for that computation. The client can then check that the com-
putation indeed took place. These schemes, along with this Article 
exhibiting attacks on remote explainability, motivate the need for 
the design of secure protocols.

Discrimination and bias detection approaches. Our work is com-
plementary to classic discrimination detection in automated sys-
tems. In contrast to works on fairness36, which attempt to identify 
and measure discrimination from systems, our work does not aim 
to spot discrimination, as we have shown it can be hidden by the 
remote malicious provider. We instead are targeting the occurrence 
of incoherent explanations produced by such a provider with the 
intent to cover its behaviour, which has a completely different nature 
than fairness-based test suites. Galhotra and others11, inspired by 
statistical causality15, for example, propose to create input datasets 
for observing discrimination on some specific features by the sys-
tem being tested.

Although there are numerous comments and proposals for 
good practice when releasing models that may include some forms 
of bias37, the automatic detection of bias on the user side is also of 
interest for the community. For example, researchers have sought 
to detect Simpson’s paradox38 in the data39. Another work has made 
use of causal graphs to detect40 a potential discrimination in the 
data, while ref. 41 proposes purging the data so that direct and/or 
indirect discriminatory decision rules are converted to legitimate 
classification rules. Some works are specific to some applications, 
such as financial ones42. Note that those approaches by definition 
require access to the training data, which is a too restrictive assump-
tion in the context of our contribution.

The work in ref. 43 proposes leveraging transfer learning (or 
distillation) to mimic the behaviour of a blackbox model, here a 
credit scoring model. A collection campaign is assumed to provide 
a labelled dataset with risk scores, as produced by the model and 
ground-truth outcome. From this dataset a model is trained that 
aims at mimicking the blackbox as close as possible. Both models 
are then compared on their outcome, and a method to estimate 
the confidence interval for the variance of results is presented. The 
trained model can then be queried to assess potential bias. This 
approach proves solid guarantees when one assumes that the dataset 
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is extracted from a blackbox that does not aim to bias its outputs to 
prevent audits of that form.

The rationalization of explanations. More closely related to our 
work is the recent paper by Aivodji and colleagues16, which intro-
duces the concept of rationalization, in which a blackbox algorithm 
is approximated by a surrogate model that is ‘fairer’ that the original 
blackbox. In our terminology, they craft C0

I
 models that optimize 

arbitrary fairness objectives. To achieve this, they explore decision 
tree models trained using the blackbox decisions on a predefined 
set of inputs. This produces another argument against blackbox 
explainability in a remote context. The main technical difference 
with our tree algorithm is that their surrogates C0

I
 optimize an exte-

rior metric (fairness) at the cost of some coherence (fidelity in the 
authors’ terminology). In contrast, our illustration produces surro-
gates with perfect coherence that do not optimize any exterior met-
ric such as fairness. In our model, spotting an incoherence (that is, 
the explained model produces a y while the blackbox produces a �y) 
would directly provide a proof of manipulation and reveal the trick-
ery. Interestingly, the IP approach fully applies in the context of their 
model surrogates, as it arises as soon as more than one surrogate 
is used (regardless of the explanation). This Article focuses on the 
user-side observation of explanations and users’ ability to discover 
such attacks. We rigorously prove that single queries are not suf-
ficient to determine a manipulation, and that the problem is hard 
even in the presence of multiple queries and observations.

conclusion
In this Article, we have studied explainability in a remote context, 
which is sometimes presented as a way to satisfy society’s demand 
for transparency when faced with automated decision making. 
We prove that it is unwise to blindly trust these explanations: like 
humans, algorithms can easily hide the true motivations of a deci-
sion when asked for explanation. To illustrate, we have presented 
an attack that generates explanations to hide the use of an arbitrary  
set of features by a classifier. Although this construction applies to 
any classifier queried in a remote context, we have also presented 
a concrete implementation of that attack on decision trees. On the 
defensive side, we have shown that such a manipulation cannot be 
spotted by one-shot requests, which is unfortunately the nominal 
use case. However, the proof of such trickery (pairs of decisions that 
are not coherent) necessarily exists. We have further evaluated in 
a practical scenario the probability of finding such pairs, which is 
low. It is thus arguably impractical for the attack to be detect by an 
isolated user.

We conclude that this must consequently question the whole 
concept of the explainability of a remote model operated by a 
third-party provider, at the very least. One research direction is 
to develop secure schemes in which the involved parties can trust 
the information exchanged about decisions and their explainabil-
ity, as enforced by new protocols. A second line of research may be 
the collaboration of users’ observations for spotting the attack in 
an automated way. Indeed, as was done by Chen and colleagues44 
to understand the impact of Uber surge pricing on passengers and 
drivers (by deploying 43 Uber accounts that act as clients), data can 
be shared to retrieve information more reliably. The anonymiza-
tion of users’ data if a pool of measurements is to be made pub-
lic is certainly crucial to ensure scalable observations of blackbox 
decision-making systems. We believe that this is an interesting 
development to come in relation to the promises of AI and auto-
mated decision-making processes.

Data availability
The data that support the findings in this study—as the German 
Credit dataset—are publicly available at https://archive.ics.uci.edu/
ml/datasets/statlog+(german+credit+data).

code availability
The code used for the experiments is provided at https://github.
com/erwanlemerrer/bouncer_problem (https://doi.org/10.5281/
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