
Gossiping GANs
Position paper

Corentin Hardy
INRIA/Technicolor

corentin.hardy@technicolor.com

Erwan Le Merrer
Technicolor

elemerrer@acm.org

Bruno Sericola
INRIA

bruno.sericola@inria.fr

Abstract
A recently celebrated kind of deep neural networks is Gener-
ative Adversarial Networks. GANs are generators of samples
from a distribution that has been learned; they are up to now
centrally trained from local data on a single location.
We question the performance of training GANs using a

spread dataset over a set of distributed machines, using a
gossip approach shown to work on standard neural networks
[1]. This performance is compared to the federated learning
distributed method, that has the drawback of sending model
data to a server. We also propose a gossip variant, where
GAN components are gossiped independently. Experiments
are conducted with Tensorflow with up to 100 emulated
machines, on the canonical MNIST dataset.
The position of this paper is to provide a first evidence

that gossip performances for GAN training are close to the
ones of federated learning, while operating in a fully de-
centralized setup. Second, to highlight that for GANs, the
distribution of data on machines is critical (i.e., i.i.d. or not).
Third, to illustrate that the gossip variant, despite proposing
data diversity to the learning phase, brings only marginal
improvements over the classic gossip approach.

1 Introduction
GANs are generative models, meaning that they are used
to generate new realistic data from the distribution of an
existing dataset. Those have been introduced by Goodfel-
low et al in seminal work [5]. Applications are for instance
to generate pictures from text descriptions [12], or to get
super-resolution from basic images [9]. A GAN is a machine
learning model, and more specifically a certain type of deep
neural network (noted DNNs hereafter). As for all other
DNNs, GANs require a large training dataset in order to
implement the target application. Nowadays, the norm is
for service providers to collect large amounts of data into
their datacenters; the learning phase is then taking place into
those premises. There is thus an obvious interest and chal-
lenge to learn over spread datasets, possibly located out of
the datacenter, in order to leverage as much data as possible.

Background on Generative Adversarial Networks The
fundamental particularity of GANs is that their training

DIDL, 2018, Rennes, France
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

phase is unsupervised, i.e., no description labels are required
to learn from the data. A classic GAN is composed of two
elements : a generator G and a discriminator D. Both are
deep neural networks. The generator takes as input a noise
signal (e.g., random vectors of size k where each element
follows a normal distribution N (0, 1)) and generates data
with the same format as training dataset data (e.g., a picture
of 128x128 pixels and 3 color channels). The discriminator re-
ceives as input either some data generated by the generator,
or data from training dataset. The goal of the discriminator
is to guess from which source the data is coming from. At
the beginning of the learning phase, the generator generates
data from a probability distribution and the discriminator
quickly learns how to differentiate that generated data from
the training data. After some iterations, the generator learns
to generate data which are closer to the dataset distribution.
If eventually, the discriminator is not able to differentiate
both, then the generator has learned the distribution of the
data in the training dataset (and thus has fitted an unlabeled
dataset in an unsupervised way).
Formally, let a given training dataset be included in the

data space X , where x in that dataset follows a distribution
probability Pdata. Let a GAN, composed of generator G and
discriminator D, which tries to learn this distribution. As
proposed in the original GAN paper [5], we model the gen-
erator by the function Gw : Rk −→ X where w contains the
parameters of its DNN and k is fixed. Similarly, we model
the discriminator by the function Dθ : X −→ [0, 1] where
Dθ (x) is the probability that x is a data from the training
dataset, and θ contains the parameters of the discriminator.
The learning consists in finding the parameters w∗ for the
generator :
argmin

w
max
θ
Ex∼Pdata [logDθ (x)]+Ez∼Pz [log (1 − Dθ (Gw (z))]

where Pz is amultivariate normal distribution of ak-dimensional
random vector. In this equation,D tries to minimize the clas-
sification error on real data (the left side of the equation)
and the error of classification on fake data (in the right side).
G tries to maximize the right side E [log(1 − D (G (z))] (it
does not have impact on the left side), that means it tries to
maximize the classification error of D on generated data.

2 Federated learning vs gossip
2.1 Experimental setup
We experiment on the Google Tensorflow platform.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

DIDL, 2018, Rennes, France C. Hardy et al.

We emulate N machines, each containing an equal (i.i.d.)
share of the training dataset, so that one GAN per machine
is trained, and data shares never leave their original machine.
We use the MNIST dataset, which is composed of 60,000
images of handwritten digits of size 28×28 pixels. The dataset
is composed of 10 classes (we do not leverage the class labels
in experiments as GANs are unsupervised learning methods).

The GAN model used comes from the open source models
of the Tensorflow plaftform: G is composed of two fully-
connected layers of sizes 1024 and 6272, followed by 2 trans-
posed convolutional layers with respectively 64 and 32 filters,
and a final layer convolutional layer using one filter. D is
composed of 2 convolutional layers with respectively 64 and
128 filters, followed by a fully-connected layer of 1024 neu-
rons and a last one of 1 neuron. We use the same training
configuration as for the standard neural network case. G
takes as input batches of random vectors of size 128 where
each element is generated from a normal distributionN (0, 1).
We set the total number of iterations to I = 20, 000 for G in
all experiments.

Figure 1. The different communication setups considered:
a) Stand-alone (i.e., no collaboration between machines), b)
Federated learning, c) Gossip DDL, and c) Gossip_ind DDL.
Red and blue arrows represent the movement of G and D.

Competing approaches (i) A stand-alone version (Figure
1a), intended to illustrate the baseline of a distributed dataset,
but non-collaborative computation. In this setup, one GAN
is trained per machine without any communication or col-
laboration with other participants. Each GAN uses only local
data on its machine.
(ii) The federated learning [11] approach (Figure 1b). We
apply it to GANs, by considering that each machine i trains
its GAN and then sends its parameters (bothwi and θi) every
K iterations to a parameter server (PS). This server averages
all receivedwi and θi , and sends them to all machines at the
beginning of the new iteration. Please note that federated
learning was not proposed for the learning of GANs; we
are using this server-centric approach as an expected upper

bound on the performance of the trained of GANs.
(iii) The state of the art of distributed deep learning using
gossip communication [1], that was not previously experi-
mented on GANs. Every K local iterations, each machine i
sends its parameters (bothwi and θi) to a neighbour j (Figure
1c). We consider the neighbour j as randomly selected among
all machines at each communication step. The machine j av-
erages receivedwi and θi with their local parameterswj and
θ j before running a new learning step of K iterations. We
name this approach Gossip DDL.
(iv) A variant of the Gossip DDLwhere G parameters (w) and
D parameters (θ) are not sent to the same machine during
each communication step (independent destination selec-
tion, as on Figure 1d). So a machine i averages its parameters
wi and θi with wj and θk , where j and k are two different
machines. The idea is to mix G and D couples during the
learning process, in the hope for better performance facing
data variety, as illustrated in [8] in a central setup. We name
this variant Gossip_ind DDL.

Metrics Evaluating generative models such as GANs is a
difficult task. Ideally, it requires human judgment to assess
the quality of the generated data. Fortunately, in the domain
of GANs, interesting methods are proposed to simulate this
human judgment. The main one is named the Inception Score
(we denote it by IS), and has been proposed by Salimans
et al. [13], and shown to be correlated to human judgment.
The IS consists in applying a pre-trained Inception classifier
over the generated data. The Inception Score evaluates the
confidence on generated data classification (i.e., generated
data are, or not, well recognized by the Inception network),
and the diversity of output (i.e., generated data are not all
the same). To evaluate the competing approaches on MNIST,
we use the MNIST score (we denote it by MS), similar to the
Inception score but using a classifier adapted to MNIST data
instead of Inception net. Heusel et al. propose a secondmetric
named the Fréchet Inception Distance (FID) in [7]. The FID
measures a distance between the distribution of generated
data PG and real data Pdata. It applies the Inception network
on a sample of generated data and another sample of real
data and suppose their outputs are Gaussian distributions.
The FID computes the Fréchet Distance between the Gauss-
ian distribution obtained using the generated data and the
Gaussian distribution obtained using real data. As for the In-
ception distance, we use a classifier more adapted to compute
the FID on the MNIST dataset. We use the implementation
of the MS and FID available in Tensorflow1.

2.2 Scalability vs performance
We consider that each machine hosts 1/N of the MNIST
dataset, randomly i.i.d. split. The overall number of sam-
ples remains constant (60, 000 pictures). The goal is to assess
1Weuse code fromhttps://github.com/tensorflow/models/blob/master/research/
gan/mnist/util.py.

https://github.com/tensorflow/models/blob/master/research/gan/mnist/util.py
https://github.com/tensorflow/models/blob/master/research/gan/mnist/util.py

Gossiping GANs DIDL, 2018, Rennes, France

Figure 2. Inception score for MNIST (MS) and the Fréchet Inception Distance (FID) for
the four competitors with N ∈ {1, 2, 10, 100}. Higher MS and lower FID are better.

Figure 3. Samples generated by the
best GAN of each competing method.

the scalability of competitor performances. We train all ap-
proaches with a number K = 200 of local iterations between
two communication steps (not applicable for the stand-alone
method) and a total number of I = 20, 000 iterations. We
run the training for N ∈ {1, 2, 10, 100}. Note that N = 1 cor-
responds to the central case, and that for N = 2, federated
learning and the two gossip methods are equivalents, i.e., the
parameters of both nodes are averaged at each communica-
tion step (solely the federated learning curve is presented).

The MS (Inception score) and the FID are measured after
each communication step. The mean score of all GANs on
all machines, and for each competitor, is reported in Figure
2. To better understand the performance of final GANs in
practice, we plot few samples generated by those at the end
of each run (i.e., after 20, 000 iterations), on Figure 3. Finally,
Figure 4 presents the final GANs best scores at the end of
runs, as well as standard deviations on individual machines.

Experiment Results We first observe that the Stand-alone
baseline shows larger score deviations due to non collabo-
ration (Figure 4). Very clearly, Stand-alone learning suffers
from the lack of local data in the case where N = 100, and
thus cannot provide satisfying learning results (Figure 3 for

N = 100). From this moment onward, the need for a collabo-
rative approach is clearly required for performance reasons.
As expected, federated learning obtains the best results

on MS and FID with N = 10 and N = 100, which are similar
or greater than the result of centralized run (N = 1). This
comes at the cost of sending all G andD parameters of each
machine to a server to average them at each communication
step, as well as requires a large bandwidth on that server for
gathering all model updates from machines [6].

Third observation is that the gossip learning methods for
GANs can obtain good results too. Gossip DLL methods ob-
tain close results forN = 10 andN = 100; second we observe
that the variant Gossip_ind only marginally improve results.
For N = 10, Gossip DDL obtains similar results to federated
learning for the FID metric, and close enough for the MS
metric. For N = 100, Gossip DDL results decrease compared
to federated learning but are yet much better than the ones
of the stand-alone method. Score deviations for gossip meth-
ods are larger than for federated learning; this may justify a
final aggregation step at the end of runs, where all machines
distributedly converge to keeping the best G and D couple
only. The figure 3 shows that samples generated by gossip
methods also look realistic for most of them.

DIDL, 2018, Rennes, France C. Hardy et al.

Figure 4. Distribution of final GAN scores (FID and MS) for
each competitor, with N ∈ {1, 10, 100}.

Figure 5. FID for competitors: non i.i.d. training dataset.
N = 10: each machine hosts the data of a single digit.

We finally run a scenario where data on machines is not
i.i.d.: each of the 10 machines hosts images from a single
digit. We observe on Figure 5 that none of the competitors
manage to reach a decent FID score, underlining the non
converge of the learning approaches.

3 Related Work
Distributing the learning of classic deep neural networks
over multiple machines is generally performed with the Pa-
rameter Server model proposed by Dean et al. in [4]. It has
been followed by speed up proposals [2, 3, 10]. Distributed
learning on edge-devices (i.e., out of the datacenter) has also
recently been proposed [6, 14].
We reviewed the GAN concept [5] in the introduction.

The specifics of distributing GANs efficiently for distributed
datasets is still an open topic for research, since the tight
coupling of generators and discriminators are to be taken
into account. This paper compares a gossip approach adapted
from [1], as well as a variant with independent gossiping of
generators and discriminators; both are in turn compared to
a baseline and to federated learning [11].

4 Conclusion
The conclusions of this position paper are that:

(i) the gossiping process of GANs gets the learning perfor-
mances close enough to the one of federated learning, with
the benefit of an absence of a central server. This empirical
fact was not reported in [1] even for the gossip of a classic
neural model. Futureworks should confirm this observation
drawn from the MNIST dataset on more datasets and GAN
architectures. (ii) for GANs, the initial distribution of data
(i.e., i.i.d. or not) is crucial for convergence. (iii) the intuition
(led by reference [8]) that the competition of shuffled G and
D, in order to bring more diversity, only brings marginally
better scores as compared to the basic gossip method.
This calls for improved distributed learning techniques

in the specific context of GANs, including more advanced
gossiping ones, in order to bridge the gap between federated
learning (centralized) and a fully distributed learning step.

References
[1] M. Blot, D. Picard, M. Cord, and N. Thome. 2016. Gossip training for

deep learning. ArXiv e-prints (Nov. 2016). arXiv:cs.CV/1611.09726
[2] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016.

Revisiting Distributed Synchronous SGD. In ICLR, Workshop Track.
[3] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-

naraman. 2014. Project Adam: Building an Efficient and Scalable Deep
Learning Training System. In OSDI.

[4] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc'aurelio Ranzato, Andrew Senior, Paul Tucker, Ke
Yang, Quoc V. Le, and Andrew Y. Ng. 2012. Large Scale Distributed
Deep Networks. In NIPS.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. 2014. Generative Adversarial
Networks. ArXiv e-prints (June 2014). arXiv:stat.ML/1406.2661

[6] C. Hardy, E. Le Merrer, and B. Sericola. 2017. Distributed deep learning
on edge-devices: Feasibility via adaptive compression. In NCA.

[7] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter.
2017. GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium. (2017). arXiv:cs.LG/1706.08500

[8] Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, and GrahamW. Taylor.
2016. Generative Adversarial Parallelization. CoRR abs/1612.04021
(2016). arXiv:1612.04021

[9] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, andW. Shi. 2016. Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial Net-
work. (2016). arXiv:cs.CV/1609.04802

[10] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In OSDI.

[11] H. BrendanMcMahan, Eider Moore, Daniel Ramage, and Blaise Agüera
y Arcas. 2016. Federated Learning of Deep Networks using Model
Averaging. CoRR abs/1602.05629 (2016). arXiv:1602.05629

[12] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee.
2016. Generative Adversarial Text to Image Synthesis. (2016).
arXiv:1605.05396

[13] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. 2016. Improved Techniques for Training GANs. (2016).
arXiv:cs.LG/1606.03498

[14] S. Teerapittayanon, B. McDanel, and H. T. Kung. 2017. Distributed
Deep Neural Networks Over the Cloud, the Edge and End Devices. In
ICDCS.

http://arxiv.org/abs/cs.CV/1611.09726
http://arxiv.org/abs/stat.ML/1406.2661
http://arxiv.org/abs/cs.LG/1706.08500
http://arxiv.org/abs/1612.04021
http://arxiv.org/abs/cs.CV/1609.04802
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1605.05396
http://arxiv.org/abs/cs.LG/1606.03498

	Abstract
	1 Introduction
	2 Federated learning vs gossip
	2.1 Experimental setup
	2.2 Scalability vs performance

	3 Related Work
	4 Conclusion
	References

