
The Imitation Game: Algorithm Selection
by Exploiting Black-Box Recommenders

Georgios Damaskinos1
?

, Rachid Guerraoui1, Erwan Le Merrer2, and Christoph
Neumann3

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{georgios.damaskinos,rachid.guerraoui}@epfl.ch

2 Université de Rennes, Inria, CNRS, IRISA, France
erwan.le-merrer@inria.fr

3 InterDigital, Rennes, France
christoph.neumann@interdigital.com

Abstract. Cross-validation is commonly used to select the recommendation al-
gorithms that will generalize best on yet unknown data. Yet, in many situations
the available dataset used for cross-validation is scarce and the selected algo-
rithm might not be the best suited for the unknown data. In contrast, established
companies have a large amount of data available to select and tune their recom-
mender algorithms, which therefore should generalize better. These companies
often make their recommender systems available as black-boxes, i.e., users query
the recommender through an API or a browser. This paper proposes RECRANK,
a technique that exploits a black-box recommender system, in addition to clas-
sic cross-validation. RECRANK employs graph similarity measures to compute a
distance between the output recommendations of the black-box and of the con-
sidered algorithms. We empirically show that RECRANK provides a substantial
improvement (33%) for the selection of algorithms for the MovieLens dataset, in
comparison with standalone cross-validation.

Keywords: Recommender algorithm selection · Black-box exploitation · Cross-
validation · Graph similarity · Spearman ranking.

1 Introduction

The availability of open source recommendation algorithms and engines is appealing
for startups or institutions that bootstrap their online services. A plethora of approaches,
from collaborative filtering techniques to neural network based approaches are now at
disposal4, along with the deluge of research results that are thoroughly described (but
not open-sourced). The users of online services generate a huge volume of data thus

? Corresponding author.
4 https://github.com/grahamjenson/list_of_recommender_systems

https://github.com/grahamjenson/list_of_recommender_systems

2 G. Damaskinos et al.

triggering the advantage shift from solely leveraging a good item recommendation al-
gorithm, to having access to both a good algorithm and a considerable amount of data
for training or parameterizing it. In that context, it is clear that the big industrial players,
have a steady and decisive advantage over potential newcomers on the market since they
have both significant engineering work-forces and a large audience to get data from.
Those established companies propose recommendation services, that interact with users
through queries from browser-interactions or standard APIs. The recommendation al-
gorithm acts as a black-box from the perspective of the user, and for potential observers
such as those newcomers.

We present RECRANK, a method to sort a list of available recommendation al-
gorithms based on their ability to generalize on unknown data. In stark contrast with
cross-validation, this method exploits the recommendations of an established black-box
recommender, and captures how well each of the available recommendation algorithms
imitates the black-box recommender. We evaluate RECRANK and depict its superiority
against classic cross-validation and an alternative ranking method. Our code is avail-
able [1].

Problem setting. Let D be the corpus of data that the recommender interacts with.
This data includes tuples of the form 〈u, i, l〉 where a user u gives feedback l (implicit
or explicit) for a certain item i. We split D into three parts: D = {Da ∪ Db ∪ Du}.

On the one hand, an entity (e.g., a startup) targets to bootstrap a recommender. This
entity has access to an available dataset Da, typically limited in size. This entity has
also access to a set of open-sourced or in-house candidate recommendation algorithms,
and needs to select the ones that will generalize best (i.e., provide good recommenda-
tions) on an unknown dataset Du.

On the other hand, a well-established recommendation service (e.g., IMDB, Spo-
tify) enables queries to its recommender, typically through an API. We assume that
the well-established recommender was trained using a private (i.e., available only to
itself) dataset Db (typically significantly larger than Da) and a private algorithm. This
algorithm is a black-box to a user, and we denote it as f(Db). The inputs to the black-
box recommender are queries of the form 〈u, i, l〉 and the output is a ranked list of
the top-N recommendations for user u, typically based on knowledge of the black-box
recommender regarding u and i. For example, users make queries such as 〈user, song,
click〉 (Spotify), 〈user, video, like〉 (YouTube) or 〈user, movie, rating〉 (IMDB) and
get a ranked list of recommendations such as “Made for Alice” (Spotify), “Up next”
(YouTube) or “Recommended For You” (IMDB), respectively.

Let A be the set of considered recommendation algorithms, along with their hyper-
parameters. We define PA(D) ∈ R as the performance measure of an algorithm A ∈ A
given a datasetD (e.g., the precision of A after splittingD into a training and validation
set). Let K be any side knowledge. We consider r(A,D,K) to be a ranking function
producing a sorted array [A0,A1, . . . ,An−1], such that PA0

(D) ≥ PA1
(D) ≥ · · · ≥

PAn−1
(D). Each algorithm in A is solely trained and cross-validated using Da. We

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders 3

define the optimal ranking as r∗ := r(A,Da ∪ Du, ∅), i.e., the perfect ranking for the
available trained algorithms after taking into account the yet unknown data Du.

Black-box exploitation. We define the problem of exploiting a black-box recom-
mender for algorithm selection as finding the ranking:

r := argmax
r′

ρ(r∗, r′(A,Da, f(Db))) (1)

with ρ being the Spearman ranking correlation score (§3). The goal is to obtain side
knowledge from the black-box in order to produce a ranking that gets closer to the
optimal ranking. Our working hypothesis is that:

ρ(r∗, r(A,Da, f(Db)) > ρ(r∗, r(A,Da, ∅))) (2)

i.e., there exists a gain (in comparison with cross-validation) from the information
f(Db) leaked from the black-box.

Noteworthy, the option of building a proxy recommender that always employs the
black-box is not practical. Sending all the data to the black-box implies potential pri-
vacy violations as the user feedback (e.g., movie ratings) is forwarded to a third-party.
From the system performance perspective, there are significant additional bandwidth
costs and the service throughput is bounded by the query APIs limits (e.g., IMDB via
RapidAPI has a limit of 1000 requests per day [2]). Therefore, the goal is to bootstrap
the service and then only utilize the selected algorithm locally.

2 RECRANK

We introduce, RECRANK, a ranking function that exploits the outputs of a black-box
(series of top-N recommendations) to compute a distance between each algorithm in
A and a black-box recommender, under the assumption that the black-box generalizes
better due to its larger dataset (we validate this assumption in §3). The final ranking of
RECRANK follows the ascending order of this distance: the better an algorithm imitates
the black-box, the higher its ranking.

RECRANK consists of two components as shown in Figure 1. REC2GRAPH trans-
forms the output of a recommender into a graph data structure. The graph obtained
from the outputs of the black-box is compared to the graph obtained from the outputs
of each algorithm inA, in order to compute a distance D with GRAPHDIST. The graph
representation captures latent information about the recommender outputs (e.g., popu-
larity of certain items among different subsets of users). This information is important
for the performance of RECRANK, as we empirically show in §3 by using a baseline
that directly compares the outputs of the two algorithms. RECRANK is shown in Al-
gorithm 1, where get rec(X,Dq) returns the top-N recommendations of algorithm X

given inputs in query dataset Dq .

4 G. Damaskinos et al.

Algorithm A

Algorithm B

rec2graph

rec2graph

gr
ap

hD
ist

D(A, B)

Fig. 1: Core components of RECRANK. Algorithm A is each algorithm in set A using
the available dataset Da, while B is the black-box recommender. RECRANK builds a
graph for each algorithm using REC2GRAPH and computes a distance between graphs
using GRAPHDIST.

Algorithm 1: RECRANK

Input: Candidate algorithm set A, black-box B, query set Dq

1 Gb = REC2GRAPH (get rec(B,Dq))
2 for A in A do
3 Ga = REC2GRAPH (get rec(A,Dq))
4 D(A,B) = GRAPHDIST (Ga, Gb)
5 distances.append(D(A,B))

6 end
7 return sort(distances)

REC2GRAPH. This method transforms the output of the queried recommender into a
graph. Building a graph from recommendations was recently shown to be interesting
for several applications [12,7]. For each query 〈u, i, l〉 in the query dataset, we denote
as Dq , the recommender outputs a list of the top-N recommendations. REC2GRAPH

constructs the graph according to the following rules.

– Vertex i: There exists a recommendation for item i and/or there exists a query for
item i in Dq (e.g., a movie rating).

– Edge eij : Item j is at least in one of the top-N recommendation lists given as an
output to a query for item i.

– Weight wij =

∑
eij

ranking score∑
e∈E

∑
e ranking score

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders 5

where
∑

eij
ranking score is the summation of the recommender output over all rec-

ommendations for item j triggered by a query for item i.5

The edge weight captures the fact that there are typically multiple recommendations
between the same items. For example, a user might receive the same item in multiple
top-N recommendations before she either clicks it or the recommender lowers its rank-
ing and removes it from the top-N list. The denominator normalizes each weight in
order for the graphs of different algorithms to be comparable, given that the scores of
each recommender have different scales.

GRAPHDIST. In order to compare the two graphs, GRAPHDIST extracts a set of fea-
tures for each graph (denoted as XA and XB) and computes the distance between the
two algorithms:

D(A,B) := ‖XA −XB‖ (3)

GRAPHDIST extracts features that capture the state of the algorithm recommenda-
tions. For the features that involve distributions, we employ statistical values depending
on whether we assume a Gaussian prior or not. We list a subset of these features below,
and note that X ∈ R31; the full set of extracted features is available in our code [1].

– Number vertices and number of edges. These illustrate the number of distinct rec-
ommendations.

– Vertex in-degree. This shows how polarized the recommendations are, i.e., how
many popular items are recommended and how much is their popularity.

– PageRank. This indicates the PageRank centrality in the graph of the recommended
items.

– Eigenvector and betweeness centrality. These centrality measures show how many
items are the most central, i.e., most popular among the recommendations.

– Closeness centrality. This also captures the topological proximity of a given item
to the others in the graph.

– Assortativity. This shows the connectivity between nodes of similar degree, i.e.,
how much popular items are connected to other popular items.

– Shortest distances. For each vertex, we compute the mean value of its shortest dis-
tances with each other vertex. We then average these mean values across all ver-
texes. This feature captures how close each item node is to the others.

The construction of GRAPHDIST makes RECRANK interpretable. Given the output
of RECRANK, one can determine the contributing factor of each feature to this output.
For example, if the Vertex in-degree feature has a very similar value for the candidate
algorithm and the black box (i.e., contribution to the distance is minimal) comparing
to the other features, then one can conclude that recommending popular items is an
important factor for the final rank (output of RECRANK) of this candidate algorithm.

5 If the recommender only outputs a top-N list, the output for each item is the rank (e.g., value
∈ [1, 5] for top-5 outputs).

6 G. Damaskinos et al.

3 Evaluation

We study the performance of RECRANK on the MovieLens dataset6 that consists of
100,000 ratings from 943 users on 1682 movies.

Table 1: Candidate recommendation algorithms. Information regarding the hyperpa-
rameters is available in our open-source repository [1].

Library Model-based Memory-based Baselines
Librec AOBPR, BIASEDMFlib, KNNlib MPOPlib,

BPMFlib, EALSlib, LDAlib, RANDlib
LLORMAlib, NMFlib,
SVDPPlib, PMF2lib
PMFlib, RBMlib

Surpriselib NMF, PMF, SVD, SVDpp KNNWithMeans

Recommendation algorithms. We collect recommendation algorithms from open-
source libraries: 14 algorithms from Librec7 and 5 algorithms from SurpriseLib8, as
summarized in Table 1. We consider that a different implementation of the same al-
gorithm constitutes a new candidate recommendation algorithm (e.g., KNNlib and KN-
NWithMeans): the output recommendations depend on various factors that differ among
the two libraries (e.g., the formula for calculating the rating prediction). Additionally,
we include two versions of the PMF algorithm (denoted as PMFlib and PMF2lib) with
a different hyper-parameter tuning setup. Therefore, we illustrate that a different tun-
ing (that can be the result of a difference in the resources for the A/B testing phase)
leads to a different recommendation behavior (Table 2), thus to a different candidate
recommendation algorithm.

Evaluation metrics. We now describe the metrics used for reflecting the performance
of the candidate recommender and for demonstrating the efficacy of RECRANK.
Precision. We adopt this metric to test the accuracy of the recommendations. Given that
Hu is the set of recommended items that were clicked by a user u (hits), and Ru is
the set of items recommended to u, we denote the precision for u by Precisionu and
define it as follows.

Precisionu =
|Hu|
|Ru|

(4)

6 http://grouplens.org/datasets/movielens/
7 https://www.librec.net/
8 https://www.surpriselib.com/

http://grouplens.org/datasets/movielens/
https://www.librec.net/
https://www.surpriselib.com/

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders 7

The overall precision over the whole test set is the average over the precision values for
all users in the test set. Note that a recommended item is considered as a hit, if the user
rates that item anytime later than the time of the recommendation with a rating score
larger than 50% of the maximum score [5].
Recall. We use this metric to capture the sensitivity of a recommender to the frequency
of updates. Given that Cu is the set of items clicked by a user u, we denote the recall for
u by Recallu and define it as follows.

Recallu =
|Hu|
|Cu|

(5)

The overall recall is the average over the recall values for all the users in the test set.
F1-score. We employ this standard metric to measure the recommendation accuracy in
order to combine the precision and recall into a single score.

F1u = 2 ∗ Precisionu ∗Recallu
Precisionu +Recallu

Spearman correlation. We use this metric to evaluate the ranking quality of RECRANK.
Moreover, we compute the Spearman rank-order correlation coefficient between the
output ranking and the optimal ranking r∗, i.e., the ranking after evaluating the can-
didates on the dataset Du. A value of 0 indicates no correlation and a value of 1 an
exact monotonic relationship; thus the higher the value of this metric, the better the
performance. We compute this metric as follows:

ρ = 1− 6
∑
d2i

n(n2 − 1)
, 1 ≤ i ≤ C (6)

where di = rank(Ai) − optimal rank(Ai), is the difference between the two ranks
for each candidate algorithm and n is the number of candidates.

The impact of an ordering mismatch does not depend on the rank of the mismatch.
For example, the Spearman correlation between {1,2,3,4} and {1,2,4,3} is the same
as {1,2,3,4} and {2,1,4,3}. This ensures an equal weight for all the ranked candidates
based on the fact that the entity that employs RECRANK can have access to any subset
of these candidates.

Evaluation scheme. We replay the dataset, ordered by the timestamp, to capture the
original temporal behavior. We split the dataset into Da,Db,Du,Dq , according to Fig-
ure 2, and derive Dq by randomly sampling 1000 ratings from Du. We then train all
the available recommendation algorithms on Db and evaluate them on Du. Given our
assumption regarding a black-box recommender with (a) significantly more data avail-
able for training and (b) superior algorithm (§1), we (a) make Db significantly larger
than Da and (b) select the recommendation algorithm with the highest F1-score as the
black-box. The remaining recommendation algorithms constitute our candidate recom-
mendation algorithms. Finally, we re-train each candidate recommendation algorithm
on the training set (first split of Da) and tune on the validation set (second split of

8 G. Damaskinos et al.

4000 1000 2000

Dα

training validation Du

1000

Db

Dq

93000

Fig. 2: Chronological data split for MovieLens. The first part is used for Da, the largest
part for the black-box Db, and the last part is the yet unknown data Du.

Da, i.e., most recent 1000 ratings, based on the benchmark for evaluating stream-based
recommenders [9]). Further information regarding our training setup (e.g., choice of
hyperparameters) is available in our open-source repository [1].

Baselines. We compare RECRANK with the traditional ranking approach (i.e., cross-
validation) along with a baseline algorithm, namely SETDISTRANK. SETDISTRANK

computes the distance between algorithms directly from their outputs (i.e., without the
REC2GRAPH and GRAPHDIST methods). The comparison with SETDISTRANK illus-
trates the importance of these two methods for the performance of RECRANK. SETDIS-
TRANK computes the distance as follows:

D(A,B) =
|
⋂

u∈U Recommendedu|+ |
⋂

i∈I Recommendedi|
2

(7)

where U is the set of users and I is the set of items. Recommendedu is the per-user
recommendation set, i.e., the set of all the items recommended after a query from user
u.

⋂
u∈U Recommendedu denotes the intersection among all the per-user recommen-

dation sets of the algorithms A,B. Recommendedi is defined respectively.

Experimental results. We train the candidate recommendation algorithms (Table 1) by
using the data scheme in Figure 2 and present the results in Table 2. First, we observe
that the ranking derived from cross-validation on Du (2nd column) is different than
the optimal ranking (3rd column). Therefore, there is room for RECRANK to get a
better ranking. We train all the algorithms with the black-box dataset Db in order to
select the black-box recommender. According to the results shown in the 4th column,
this algorithm is LLORMAlib. The 5th column contains the results when training each
algorithm on the training set and evaluating on the query set Dq , which constitutes the
comparison case for all presented competitors.

We compare the performance of the ranking algorithms by comparing the Spearman
correlation with respect to the third column of Table 2. Table 3 depicts the results.

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders 9

Table 2: F1 @ top-20 recommendations (and rank) of candidate algorithms (black-box
algorithm is in bold).

Standard Optimal Black-box Cross-validation
cross-validation ranking ranking on query set

Training set
Evaluation set

Dtraining
a

Dvalidation
a

Dtraining
a

Du

Db

Du

Dtraining
a

Dq

AOBPRlib 0.213 (4) 0.087 (5) 0.156 (5) 0.046 (4)
BIASEDMFlib 0.136 (9) 0.054 (11) 0.057 (11) 0.028 (13)
BPMFlib 0.618 (1) 0.419 (2) 0.408 (2) 0.374 (2)
EALSlib 0.197 (7) 0.084 (7) 0.138 (6) 0.046 (4)
KNNlib 0.206 (6) 0.085 (6) 0.126 (7) 0.046 (4)
KNNWithMeans 0.039 (19) 0.024 (18) 0.027 (15) 0.016 (18)
LDAlib 0.210 (5) 0.095 (4) 0.164 (4) 0.046 (4)
LLORMAlib 0.611 (2) 0.420 (1) 0.412 (1) 0.377 (1)
MPOPlib 0.188 (8) 0.074 (9) 0.115 (8) 0.042 (8)
NMF 0.115 (13) 0.048 (15) 0.023 (16) 0.032 (11)
NMFlib 0.045 (18) 0.016 (19) 0.002 (19) 0.012 (19)
PMF 0.083 (16) 0.043 (16) 0.016 (18) 0.022 (17)
PMF2lib 0.133 (10) 0.076 (8) 0.058 (10) 0.037 (9)
PMFlib 0.106 (15) 0.050 (13) 0.030 (14) 0.027 (14)
RANDlib 0.083 (16) 0.039 (17) 0.023 (16) 0.024 (16)
RBMlib 0.565 (3) 0.398 (3) 0.403 (3) 0.358 (3)
SVD 0.123 (11) 0.049 (14) 0.059 (9) 0.033 (10)
SVDpp 0.120 (12) 0.052 (12) 0.051 (12) 0.031 (12)
SVDpplib 0.109 (14) 0.055 (10) 0.031 (13) 0.027 (14)

Table 3: Candidate algorithms ranking evaluation.
Ranking method Spearman correlation
Standard cross-validation 0.53
Cross-validation on query set -0.44
SETDISTRANK 0.68
RECRANK 0.79

The poor performance of the cross-validation on the query set Dq can be attributed to
the chronological sorting of the ratings; the cross-validation becomes accurate if the
validation and training set are closer in time and thus have significant overlap in the
user sets. We then observe the substantial improvement (33%) that RECRANK provides
in comparison with the standard cross-validation. The fact that SETDISTRANK also
outperforms the cross-validation approach confirms that the information provided by
the black-box recommender is valuable even without REC2GRAPH and GRAPHDIST.

10 G. Damaskinos et al.

0 20 40 60 80 100
q size (% u size)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ra
nk

in
g

co
rre

la
tio

n
 (s

pe
ar

m
an

 c
oe

ffi
cie

nt
)

Fig. 3: Effect of the amount of queries on the performance of RECRANK.

Figure 3 depicts the effect that the size of the query set has to the performance of
RECRANK. As the portion of Dq used to query recommenders increases, RECRANK

exploits more information to compute better distance values, resulting in a better final
ranking. The results of Table 3 have been obtained with a query set Dq by sampling
50% of Du (1000 out of 2000 ratings shown in Figure 2).

4 Related Work

RECRANK proceeds by comparing the outputs of recommenders similar to benchmark-
ing frameworks [11,16]. These frameworks enable the ranking of a set of recommenda-
tion algorithms according to some metric (e.g., F1-score) - similar to what RECRANK

does based on Da and the output of a black-box service. These frameworks do not al-
low to compare against the output recommendations of a black-box service that has
been trained and tuned on an unknown set of data.

Evaluation of recommenders is very challenging when using offline datasets such as
MovieLens. We plan to evaluate RECRANK with additional metrics such as propensity-
weighting techniques [3], as well as employ alternative online methodologies and user
studies [4]. We also plan to include additional baselines to the standard (i.e., leave-one-
out) cross-validation, e.g., based on k-fold validation [10]. Nevertheless, the function-
ality of RECRANK is independent of the evaluation methodology.

Black-box analysis of recommendation algorithms has been also studied for the goal
of algorithmic transparency. Xray [13] infers which user data (e.g. e-mails, searches) a
recommender is using. Le Merrer et al. [12] propose a framework for detecting bias
in recommended items. Hou et al. [7] proposed to operate random walks on the graph
extracted from the recommendations to a user by the Amazon book platform. While

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders 11

these related works try to understand how the remote recommender system works, they
do not try build their own recommendation system (i.e. they do not try to benefit from
the gained insights to tune a recommender) .

Imitation learning [8] and knowledge distillation [15,6] apply the broad idea of
learning a policy, a reward function or prediction function by observing an expert sys-
tem. In that sense, RECRANK is the first attempt to improve the selection of a recom-
mender algorithm by imitating an expert recommender system, typically in production.

RECRANK targets to boost the recommendation quality given a limited amount of
data, a problem also known as cold-start. Techniques that boost the quality of a specific
recommender, e.g., transfer learning [14], or meta-learing [17] can be used for creating
better candidate recommendation algorithms as input to RECRANK.

5 Discussion and Limitations

It is important to notice that, while RECRANK is the first tool to exploit black-box
recommender systems for algorithm selection, we do not claim it to be a silver bullet.
We discuss the limitations of our work in the following.

Black-box recommender bias. The recommendations of the black-box during the
operation of RECRANK may be biased, i.e., not solely targeting the relevance to the
users. For example, a commercial music recommender may promote songs from cer-
tain premium producers with the goal of direct financial gain. As a second example,
the black-box may be a relatively new service that undergoes an A/B testing phase or
some “exploration” phase (e.g., with random recommendations). In such cases, we ex-
pect RECRANK to output a biased ranking. Given that it is impossible for the user of
RECRANK to determine whether the black-box is biased at a given time, we propose
multiple deployments of RECRANK across different times. The similarities between the
outputs of these deployments could help indicate the deployments that are biased; if the
bias is not transient, multiple deployments will not be effective.

Advancing the state-of-the-art. The goal of RECRANK is not to directly create new
recommendation algorithms but to select the most promising ones among a list of can-
didates. Nevertheless, this selection could be instrumental in developing a new state-of-
the-art recommender that is an ensemble of multiple recommendation algorithms. For
example, the cold-start component could be intentionally designed to mimic the cold-
start behaviour of a well-established service; in that case RECRANK would be of great
interest.

Local VS black-box data. A question that may arise in our problem setup is whether
there are any constraints for the relation between the training data of the candidate algo-
rithms (local) and the training data of the black-box. In our evaluation (§3), this relation
is that the data has no overlap but comes from the same dataset, i.e., the user rating

12 G. Damaskinos et al.

behaviour follows the preference and behavioural drifts of the MovieLens dataset [5].
We plan to evaluate the performance of RECRANK under alternative relation scenarios
(e.g., the data comes from different datasets) as part of our future work.

We expect the performance of RECRANK to degrade as the difference between the
characteristics (e.g., how frequent are popular items rated and with what scores) of the
local and black-box training data grows. Nevertheless, we highlight that the operation of
RECRANK does not have any constraints regarding the training data as the query data is
the same both for the candidate algorithms and the black-box. The smaller the relevance
between the query data and the training data, the less the performance degradation of
RECRANK due to differences in the training data. For example, if the query data only
contains new users and new items, then RECRANK is essentially imitating the cold-start
behaviour of the black-box and we thus do not expect differences in the training data to
significantly degrade RECRANK performance.

The only requirement is for the input and output format of the query dataset to be
compliant with the black-box. This requirement is easily satisfied given our generic
form of input (tuples of the form 〈u, i, l〉) and output (ranking list of top-N recommen-
dations) as mentioned in §1.

6 Concluding remarks

We present RECRANK, an algorithm that facilitates recommender algorithm selection,
traditionally made solely via cross-validation. Our initial results show a promising po-
tential for this tool. Nevertheless, these results do not constitute an in-depth experimen-
tal validation and there is work towards measuring the true potential of RECRANK. We
also plan to compare REC2GRAPH with alternative methods for transforming the rec-
ommender outputs into graphs [12,7]. Finally, We propose RECRANK as one instance
of an algorithm that exploits a black-box recommender; we believe this proposal will
motivate related works for finding other good performing alternatives with a similar
goal.

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders 13

References

1. RECRANK source-code. https://github.com/gdamaskinos/RecRank
2. IMDB via RAPIDAPI query limit. https://rapidapi.com/blog/

how-to-use-imdb-api/

3. Agarwal, A., Wang, X., Li, C., Bendersky, M., Najork, M.: Offline comparison of ranking
functions using randomized data. In: REVEAL (2018)

4. Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and user studies
in the context of research-paper recommender systems. In: TPDL. pp. 153–168. Springer
(2015)

5. Damaskinos, G., Guerraoui, R., Patra, R.: Capturing the moment: Lightweight similarity
computations. In: ICDE. pp. 747–758. Ieee (2017)

6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015)

7. Hou, L., Liu, K., Liu, J.: Navigated random walks on amazon book recommendation net-
work. In: Complex Networks (2018)

8. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: A survey of learning
methods. CSUR 50(2), 21 (2017)

9. Kille, B., Lommatzsch, A., Turrin, R., Serény, A., Larson, M., Brodt, T., Seiler, J., Hopfgart-
ner, F.: Overview of clef newsreel 2015: News recommendation evaluation lab (2015)

10. Košir, A., Odić, A., Tkalčič, M.: How to improve the statistical power of the 10-fold cross
validation scheme in recommender systems. In: RepSys. pp. 3–6. ACM (2013)

11. Kowald, D., Kopeinik, S., Lex, E.: The tagrec framework as a toolkit for the develop-
ment of tag-based recommender systems. In: UMAP. pp. 23–28. ACM, New York, NY,
USA (2017). https://doi.org/10.1145/3099023.3099069, http://doi.acm.org/10.1145/

3099023.3099069

12. Le Merrer, E., Trédan, G.: The topological face of recommendation: models and application
to bias detection. In: Complex Networks (2017)

13. Lécuyer, M., Ducoffe, G., Lan, F., Papancea, A., Petsios, T., Spahn, R., Chaintreau, A.,
Geambasu, R.: Xray: Enhancing the web’s transparency with differential correlation. In:
USENIX Security Symposium. pp. 49–64 (2014)

14. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for
sparsity reduction. In: AAAI (2010)

15. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization.
In: ICLR (2018)

16. Said, A., Bellogı́n, A.: Rival: a toolkit to foster reproducibility in recommender system eval-
uation. In: RecSys. pp. 371–372. ACM (2014)

17. Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-learning per-
spective on cold-start recommendations for items. In: NIPS. pp. 6904–6914 (2017)

https://github.com/gdamaskinos/RecRank
https://rapidapi.com/blog/how-to-use-imdb-api/
https://rapidapi.com/blog/how-to-use-imdb-api/
https://doi.org/10.1145/3099023.3099069
http://doi.acm.org/10.1145/3099023.3099069
http://doi.acm.org/10.1145/3099023.3099069

	The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders

