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Abstract

Existing approaches to distribute Generative Adversarial
Networks (GANSs) either (i) fail to scale for they typically
put the two components of a GAN (the generator and the
discriminator) on different machines, inducing significant
communication overhead, or (ii) they face GAN training
specific issues, exacerbated by distribution.

We propose FEGAN, the first middleware for distribut-
ing GANs over hundreds of devices addressing the issues
of mode collapse and vanishing gradients. Essentially, we
revisit the idea of Federated Learning, co-locating a generator
with a discriminator on each device (addressing the scaling
problem) and having a server aggregate the devices’ models
using balanced sampling and Kullback-Leibler (KL) weighting,
mitigating training issues and boosting convergence.

Through extensive experiments, we show that FEGAN
generates high-quality dataset samples in a scalable and
devices’ heterogeneity tolerant manner. In particular, FEGAN
achieves up to 5x throughput gain with 1.5X less bandwidth
compared to the state—of-the—art GAN distributed approach
(named MD-GAN), while scaling to at least one order of
magnitude more devices. We demonstrate that FEGAN boosts
training by 2.6X w.r.t. a baseline application of Federated
Learning to GANs, while preventing training issues.

1 Introduction

GANSs enable learning the statistical distribution of a target
dataset and generating new samples from that dataset on
demand. This feature can be used in a wide range of applica-
tions such as generating pictures from text descriptions [38],
producing videos from still images [45], or increasing at will
an image resolution [25]. Other applications, such as Deep-
Fakes generation [27] are as impressive as they are critical
for society.

At the core of a GAN lie two deep neural networks: the
generator and the discriminator. They confront each other
in a game: the generator aims at generating data that looks
real (i.e., coming from the real data distribution) to feed the
discriminator. When the latter can no longer distinguish
real data from the generated one, the training stops. The
generator has then captured the data distribution and has
reached the point where it can generate new samples.

Training GANSs is resource and time consuming. For in-
stance, it takes up to 48 hours to train a GAN to learn the
distribution of a 512x512 image dataset on Google TPUs v3
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Figure 1. (a) A Parameter Server—based deployment [16]
with one generator and distributed discriminators (on 21
machines) outperforms the centralized approach. Yet, (b) it
does not scale, due to communication bottlenecks.

devices [8]. Considering the number of potential applica-
tions, it is then of paramount importance to improve this
training time. One obvious way to scale a system is to distrib-
ute the computing load on multiple devices. MD-GAN [16]
has been recently proposed as a way to distribute GANs. MD-
GAN leverages a single generator, at a central location, and
distributes the discriminator across multiple devices (this
architecture is also adopted by [52]). Such an architecture
follows the celebrated parameter server model [26], where
the server is the generator and the workers are discrimina-
tors. Figure 1a illustrates the benefit of such an architecture
with 21 machines on four datasets (MNIST [3] and Fashion-
MNIST [1], often used as baselines, CelebA [29] and Ima-
geNet [11], two state-of-the art datasets for image-based
applications). Clearly, distributing the training improves the
system throughput, defined as the number of epochs (the pro-
cessing of all data samples in the dataset) the system handles
per second. Yet, due to the presence of a single centralized
generator, this architecture does not scale, i.e., adding
devices does not improve the throughput, as illustrated in
Figure 1b. This is due to the huge volumes of data to be trans-
ferred over the network to synchronize the generator and
the multiple discriminators, making the central generator a
bottleneck. Clearly there is a huge room for improvement.
Another architecture for distributed training is Federated
Learning (FL) [32], in which training happens on the edge
devices that own private data, assisted by a central server.
Combining GAN training with this architecture can yield
impressive applications on edge devices including text-to-
image translation and generating new human poses. Yet,
approaches that followed such an architecture for GAN
training (for e.g., running diagnostics [5] or for data privacy



goals [44]) also reported difficulties due to learning diver-
gence, vanishing gradients, and mode collapse prob-
lems: learning divergence happens when neither the genera-
tor nor the discriminator reaches its goal, i.e., Nash equilib-
rium is not reached [4]. A second salient problem is vanishing
gradients, that occur when the discriminator is much more
powerful than the generator, which, in this case, always fails
to generate convincing samples to the discriminator, where
the feedback from the discriminator does not help the gen-
erator to learn [33]. Last but not least, the problem of mode
collapse happens when the generator learns to generate only
a few classes of data input rather than learning the true distri-
bution of data [9]. Such problems manifest clearly in the FL
context. For instance, the server cannot communicate with
all devices at every round for scalability reasons; some form
of device sampling is needed. Yet, such sampling should not
be uniform because of the data distribution skewness on the
devices hosting the GAN model. Unfortunately, such data
skewness can easily lead to mode collapse. Thus, the mere
application of the FL approach [47, 48, 51] to GANs training
is bound to failure [15] or to underperformance, as we shall
confirm experimentally.

Contributions. We propose FEGAN, a distributed middle-
ware that enables GANSs to scale and cope with GAN specific
issues such as mode collapse and vanishing gradients. Our
main contributions are threefold.

1) We revisit the FL paradigm, normally dedicated to deep
networks, to make it suitable to GANs. Essentially, we fully
distribute both the generator and the discriminator so that
a private GAN can be locally trained on each device. This
helps scale the system and prevent the vanishing gradients
problem, as we show in Sections 5 and 6.

2) We design mechanisms to make FEGAN resilient to
GAN specific issues. In particular, we devise two techniques
that are designed to resist the mode collapse and the learn-
ing divergence problems in a distributed setup. FEGAN pri-
oritizes updates from certain nodes over some others, us-
ing Kullback-Leibler (KL) weighting scheme, and it carefully
schedules the application of devices’ updates on the global
trained model, using the balanced sampling scheme. Both
schemes not only boost the learning quality but also help
save compute time and communication resources. FEGAN is
tolerant to devices’” heterogeneity in terms of memory and
compute power and to server and network failures through
periodic checkpointing of the learning state.

3) We conduct an extensive experimental evaluation of FE-
GAN and compare it to a state—of—the—art GAN distribution
approach (MD-GAN), as well as with a centralized approach
and a baseline application of Federated Learning to GANS.

2 Background
2.1 Generative Adversarial Networks

A GAN [14], made of generator G and discriminator 9, tar-
gets the learning of a dataset distribution in space X, where
x € X follows a distribution probability Pyata. The generator
is modeled by the function G,, : R — X, where w con-
tains the parameters of its neural network G,,, and ¢ is fixed.
Similarly, for the discriminator Dg : X — [0, 1] where
Dg(x) is the probability that x is a data from the training
dataset, and 0 contains the parameters of the discriminator
Dy. The objective consists in finding the parameters w* for
the generator: w* = argmin,, maxg(Ag + By, ), with Ag =
By [log D (x)] and B, = B, [log (1 - Do (Gu ()],
where z ~ Ny means that each entry of the ¢-dimensional
random vector z follows a normal distribution with fixed
parameters. In this equation, D adjusts its parameters 6 to
maximize Ag, i.e., the expected good classification on real
data and By ,,, the expected good classification on generated
data. G adjusts its parameters w to minimize By ,, (w does
not have impact on A), which means that it tries to min-
imize the expected good classification of D on generated
data. This competitive scheme ends, if convergence occurs,
to the learning of the dataset distribution Pyat,.

2.2 Distributed Machine Learning

The parameter server architecture [26] was a milestone for
distributed ML, introduced to greatly accelerate the compu-
tation over a single centralized process. In this model, the
parameter server allocates data (also called batches) to workers
and orchestrates the learning process. Workers run computa-
tions locally and send back their gradient errors to the server
that aggregates them in a global model. In turn, workers pull
the up-to—date model from the server and iterate until the
convergence of the global model is reached.

The Federated Learning (FL) [32] approach however seeks
to leverage a large crowd of edge devices that each owns
private data, without imposing any movement of the data
(unlike with the parameter server). The devices collabora-
tively train a global model, which is hosted on a centralized
server. The server decides which subset of the devices should
participate in a learning round through random selection.
Selected devices, in turn, send their updates to the server
after a number of learning iterations over their private data.
Typically, the server aggregates the devices’ updates using
Federated Averaging [32]. The accuracy of FL is shown in [53]
to be negatively impacted by the imbalanced data distribu-
tion on the devices.

3 FEGAN Design and Implementation

In this section, we first provide the system setup and an
overview of FEGAN. Then, we focus on our design choices,
which make FEGAN scalable and resilient to GAN training
issues, and the system aspects of FEGAN.
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Figure 2. FEGAN architecture: D and G are co-located on
all devices. Dashed lines denote the communication of meta-
data about devices’ dataset and specifications. Data across
devices might be unbalanced and skewed.
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3.1 System Setup

FEGAN revisits the general Federated Learning (FL) para-
digm [21] which consists in (1) a central server (hereafter,
server) hosting the up-to-date global model and (2) a set of
computing devices that can be mobile phones or computing
nodes (hereafter called devices). Figure 2 depicts the FEGAN
architecture. The training model is composed of two neural
networks: the generator G and the discriminator D. The
server orchestrates the communication load by selecting
which devices should contribute to updating the model at
a given round. The server is also in charge of aggregating
the computation from devices to update the global model.
Each group of local iterations (on devices), ending with a
global model update, is called an FL round (or simply round).
On top of this, training and system specifics are designed to
reach our scalability and resilience goals.

Each device owns a GAN locally, composed of a local
generator and a local discriminator. Data stored on each de-
vice remains local: only the output of the local computation
is sent to the server. Given its local nature, data might be
unbalanced and possibly not identically nor independently
distributed (non-iid) across devices. Yet, the server can gather
metadata from devices regarding the number of local samples
per class. Hence, we assume each device can label its data
or at least can model its own data distribution, using gener-
ative or clustering schemes like Gaussian Mixture Models
(GMM) [39, 46] or K-means [13].

Devices only communicate with the server. As they do
not communicate with each other, they do not need to trust
each other. Communication links between the devices and
the server could be unreliable and asymmetric with limited
bandwidth [21]. The server can keep the devices’ updates
secure using off-the—shelf secure aggregation protocols [6].

3.2 The FEGAN Algorithm
Figure 3 depicts a running example of FEGAN.

Initialization. Before starting the training process, each de-
vice informs the server of its local data distribution (typically
how many classes and how many samples per class it owns
locally). Such a step could be repeated should the dataset

change during the training process. The goal of collecting
metadata from all devices is for the server to account for the
data imbalance across devices.

To this end, the server computes the Kullback-Leibler (KL)
divergence [22, 23] scores, which reflect the degree of diver-
gence of the devices’ local data distribution from the global
distribution. In particular, the KL divergence of device k is
computed as follows: Dg 1 (Px||Q) = X ex Pr(x)log( Z‘((;C))),
where Py is the normalized vector of samples per class x at
device k, Q is the normalized vector of the total number of
samples per class (in the global dataset), and X is the collec-
tion of all classes. For instance, Pi(x) = " /n,, where ny_ is
the number of samples of class x at device k, and ny is the
total number of samples at device k. The server then assigns
a score sy to each device k as follows: s = "Tk X Dgr(Px||Q),
where ny is the total number of samples per device k and n
is the total number of samples in the dataset.

All devices also send to the server their capabilities, in
terms of memory size and compute power available for train-
ing. The server then uses this information to choose a train-
ing load for each device. As for the current version of FEGAN,
the server follows a linear regression model to compute this
load, which we assume fixed throughout the training process.

Server operation. The server starts each FL round by choos-
ing a group of devices, using balanced sampling (Section 3.3),
to update collectively the model state. The server then asks
the sampled devices to contribute to the current round and
assigns to each device the pre-computed training load. At
the end of the FL round, the server collects the updates of
the devices and aggregates them using the KL weighting
scheme (Section 3.3). The server also weighs such updates
by the devices’ respective assigned batch sizes (Section 3.4).
The server repeats this procedure till convergence.

Device operation. Devices remain idle until they are con-
tacted by the server to participate in one FL round. A device
selected for a given round receives the updated model state
(of D and G) and the values for E, the number of local train-
ing iterations to be done by this device, and B, the training
batch size. After running E local training iterations, each
device sends back the updated model to the server.

3.3 FEGAN Design Choices

Co-locating networks. Training deep neural networks with
backpropagation sometimes encounters the vanishing gradi-
ents problem, which happens when the computed gradients
are extremely small, hindering the update of the network’s
parameters and hence, stopping the learning. In the context
of GANS, such a problem happens usually due to having a
very strong discriminator [33]. Given that training GANSs is
usually formulated as a game between two players/networks,
typically a network gains strength with more experience (i.e.,
with more training iterations). This strength then reflects
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Figure 3. Running example of how FEGAN works. Assume a dataset of 50 samples in 4 classes, distributed on 4 devices with
C = 0.5. In the first round, the server chooses device 1 (with the highest number of samples) and device 3 (with samples from a
class not represented by device 1). When the devices reply, the server updates the model, applying KL_weighting on their
replies. In the second round, the server chooses the unsampled devices to maintain fairness and the training continues as usual.

how good the network is (either the generator or the dis-
criminator) in doing its task. In the situation of a powerful
discriminator, the generator fails to learn as it cannot get
much information from the discriminator’s feedback. Hence,
the discriminator wins in this case, i.e., the generator always
fails to generate fake samples that can trick the discrimina-
tor. In the centralized setup, this problem can be mitigated
by choosing the correct set of hyper-parameters and loss
functions [14, 30]. Yet, this is not sufficient in the distributed
setup; it is also crucial to balance the strength of both net-
works. FEGAN solves this problem by co-locating the dis-
criminator with the generator so that both networks can be
trained simultaneously, increasing their strength at the same
time.

Importantly, co-locating networks reduces the communi-
cation overhead, compared to other designs that centralize
the generator in the server while distributing the discrimi-
nators on the devices, e.g., [5, 16]. In the latter case, the dis-
tributed discriminators should periodically send their feed-
back to the centralized generator, whose size is the same as
that of the input space that is desired to be learned, e.g., pix-
els of an image. By co-locating networks, FEGAN drastically
reduces such an overhead, as we show in Section 6.

Kullback-Leibler weighting. Data is more likely to follow
different distributions on different devices and hence, us-
ing vanilla averaging of devices’ local models might lead to
learning divergence [28]. Vanilla Federated Averaging (Fe-
dAvg) [32] is also not sufficient for convergence in some
cases [53] as it does not take data distribution discrepancies
into consideration while weighting the devices’ updates.

FEGAN mitigates learning divergence by relying on Kullback-

Leibler (KL) weighting, which is applied as follows. Upon
receipt of the updated models from the devices, the server
weights them by applying the softmax function on the KL
divergence score of each device. More specifically, the model

received from device k is given a weight wy as follows:
exp °k

Dier exp i’

of device k, and 7 is the set of devices contributing to the

wg = where si is the pre—computed KL score

current FL round. The softmax function acts as a normaliza-
tion! to the weights given to the devices’ updates so as to
make these weights sum to 1. In other words, the output of
the softmax function (i.e., the weights) can be seen as the
probability of the contribution of each device to updating the
global model state. The negative sign given to the score is to
penalize the devices with more divergence from the global
data distribution as their updates are less useful than the
other devices’ updates. Such a design of a weighting scheme
is crucial to learn the global distribution of data.

Balanced sampling. Mode collapse [9] is arguably the hard-
est problem that one can encounter while training a GAN.
Such a problem happens when the generator learns only
partially the data distribution and hence, can only generate
data from a limited number of classes. In our distributed, un-
controlled environment, the situation could be exacerbated
due to the skewness of data distribution on the devices. Our
balanced sampling scheme aims at solving this problem.

At each FL round, the server samples C X ng devices to
do the training procedure, where C denotes the fraction of
devices doing the training in each round with C €]0, 1], and
ng is the total number of devices. Note that unlike vanilla
Federated Learning [21], in FEGAN, the server starts the
sampling procedure, by choosing devices with specific data
distribution to avoid falling into mode collapse. The nov-
elty of FEGAN’s sampling is that it favors (1) devices with
more samples, (2) devices with a balanced dataset (i.e., al-
most equal number of samples per class), and (3) unsampled
devices in the previous rounds. Thus, our sampling tech-
nique always ensures a balanced number of samples per
class in the updates applied to the model (G and D). Such a
technique plays an important role in the robustness and the
convergence speed, as we show in our evaluation.

Technically, FEGAN applies balanced sampling as follows:
1) The server maintains a priority queue with the number of
accumulated samples per class from sampled devices (from
previous rounds) stored in it. 2) At each round, the server
picks the class with the least number of accumulated samples
and chooses a device that declares to have this class to include
it in the new round. 3) The server accounts for the samples

1We tried other normalization schemes (e.g., linear averaging and step-wise
averaging), and we found that softmax normalization gives the best results.



from other classes that will be included in the new round
(due to including the chosen device) and updates the queue
accordingly. 4) The server repeats this procedure until it
samples C X ny devices. It then sends the updated state of
the model, i.e., D and G networks, to the sampled devices.

3.4 FEGAN System Aspects

Handling heterogeneity. Devices in the wild are not equal
in many respects, including their hardware specifications
(e.g., compute power and memory) and the available network
bandwidth. Tolerating device heterogeneity in an optimal
manner is an open problem with many heuristics [28]. Be-
cause we are targeting GANs training, it is then crucial to
design a solution that handles device heterogeneity without
falling into GAN-specific problems. For instance, a solu-
tion that prefers sampling strong devices over weak devices
e.g., [34] can lead to mode collapse if the weak devices owns
data classes that are not represented by the strong devices.
FEGAN handles this issue by controlling the training load
given to the contributing devices in one round. More specif-
ically, the central server dictates the number of iterations
and the batch size used for local training on devices. The
server chooses less number of iterations and smaller data
batches for weaker devices. This helps mitigate the straggler
effect [26], which happens when some devices are signif-
icantly slow, degrading the whole system throughput. In
the aggregation phase, devices’ updates are also weighted
based on the load given to each of them. Such weights are
multiplied by the KL weights (wy) explained in Section 3.3.

Fault tolerance. The central server represents a single point
of failure: if it crashes, without any fault tolerance technique,
the whole learning stops, as devices do not communicate
nor trust each other. FEGAN uses periodic checkpointing
for server’s fault tolerance. Initially, FEGAN starts multiple
servers, which number can be configured, yet, only one of
them acts as a primary and the rest are backups. Only the
primary communicates with the devices while other servers
remain idle. After each FL round, the learning state is stored
in a persistent database. This includes the state of both net-
works, G and D, the optimizer, the number of epochs passed,
the data distribution on the devices, the devices capabilities,
and the history of chosen devices in all previous rounds.

In the case of the crash of the primary server, a backup
server takes over. First, it loads the latest learning state from
the persistent database and announces to the devices that
it is the new primary. The new primary then starts a new
round by choosing a new set of devices to do the training.

Network failure is detected through a standard timeout
mechanism. Such a failure could be either due to slow com-
munication, network partition, or a crashing device. In the
event of a failure, the server calls for completion or abor-
tion of the current round. Such a decision relies purely on
the server configuration and the current learning state. The

server then records the actual devices participated in this
round rather than the intended set of devices to participate.

Implementation. We implemented FEGAN on PyTorch [36].
We integrated our implementation with already-existing pub-
lic implementations of different GAN architectures imple-
mented for training on one machine. We now describe the
communication abstractions we implemented to allow the
distribution of GAN via FEGAN. Our source code will be
publicly available soon.

We rely on the notion of distributed groups as instructed
by the PyTorch distributed backend. Any invoked commu-
nication abstraction takes as an input a group defining the
set of nodes that will be involved in this communication. As
we rely on a centralized architecture (see Figure 2), we allow
only the centralized server to create groups to avoid any con-
flicts with the devices and hence, achieve strong consistency
on the group formation.

We introduce two abstractions that can be used off-the-
shelf directly by both the server and the devices: multicast
model and the average models. Multicast model is used by
the server at the beginning of any FL round to multicast the
current state of the model to a group of devices (similar to
map in MapReduce notation [10]). To comply with PyTorch
distributed runtime, the chosen devices should also invoke
this abstraction (i.e., multicast model) to receive the models
from the server. We use the NCCL backend of PyTorch [35]
so that the models stored on a GPU need not to be copied to
the CPU memory before being sent back to the devices and
hence, saving time and memoryz.

The second abstraction, average models, is used at the end
of an FL round (similar to reduce in MapReduce notation).
Typically, this function is invoked by the server to aggregate
devices’ updates. As our model is synchronous, the server
waits for all contributing devices to send back their results
before proceeding to the next round. If our weighting tech-
nique is not activated, we use the reduce operation from the
distributed backend with ReduceOp.SUM as a reduce opera-
tor and then, divide by the number of contributing devices
to this round to get the average of the updates. We use this
operation as it is always faster than the other operations.
Otherwise, we use the gather operation to first collect all
the updates from the devices and then apply the weights
calculated by the server. The main problem with the latter
operation is that it does not work on GPUs? and hence, the
updates need to be first copied to the main memory before
sending them to the server. At the other end, the server col-
lects all the updates, copy them to the GPU memory, and
then calculates the weighted average to get the new model.
We could not overcome this inherent problem of the PyTorch

2This is only true if the used abstraction is implemented by NCCL; otherwise,
we use the GLOO [19] backend.
3https://pytorch.org/docs/stable/distributed.html.
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distributed backend as gather is the only appropriate abstrac-
tion we can use to implement our average model abstraction
while applying weighted averaging.

Finally, we report on the number of lines of code (LoC)
required to port two publicly available* GAN implementa-
tions to FEGAN. Factoring out the common code for dataset
partitioning, group initialization, and performance measure-
ments (e.g., FID calculation), it takes less than 70 LoC (which
constitutes around 5% of the whole code) to port a GAN
implementation to FEGAN.

4 Experimental Setup

In this section, we describe our experimental setup, baselines,
and the configurations we used to evaluate FEGAN.

Testbed. We evaluate FEGAN on the Grid5000 platform [2],
using machines from the same cluster. Each one has 1 CPU
(Intel Xeon Gold 6126) with 2 cores, 16 GiB RAM and 2 Gbps
Ethernet, and one GPU (Nvidia Tesla P100). Unless stated
otherwise, experiments were run on 80 nodes. This number
reaches up to 176 in some experiments.

Evaluation metrics. Although evaluating GANs has been
an issue for ML practitioners, requiring human judgement
to assess the quality of the generated data [7, 30, 31], robust
metrics are now commonly used to assess the performance of
GANSs [16, 24, 52] such as Frechet Inception Distance (FID). We
evaluate FEGAN along two main metrics: FID to assess the
GAN convergence (or quality of the learned distribution) and
throughput to measure the system’s efficiency. We chose FID
as it is one of the most stable, robust, and widely-used metrics
for GAN [7]; it was the one used by our predecessors [16, 52].
Besides, FID has an official implementation in the popular
ML frameworks, including TensorFlow and PyTorch.
1. FID is a metric that computes the distance between feature
vectors of real images and generated ones. The score reflects
the statistical divergence between the generated images and
the raw images using the Inception-v3 model [43] used for
image classification. The lower the score, the better (a 0.0
score indicates that the two groups of images are identical).
2. Throughput defines the number of updates the server can
process per second. Such a metric reflects the scalability of
the system as well as the efficiency of the communication.
Note that we observe training convergence with time, the
number of training epochs, and FL rounds. However, in our
experiments, we maintain a one-to-one mapping between
the number of epochs and the number of FL rounds so, we
always show only one of them for space constraints. Also,
note that the shown results are the average of 6 runs per
experiment; we omit error-bars for better readability.

Datasets. We evaluate FEGAN in the context of three datasets:
MNIST [3], Fashion-MNIST [1], and ImageNet [11]. In our

4https://github.com/eriklindernoren/PyTorch-GAN.

evaluation, we focus on image generation not only because
it is very challenging and resource-demanding but also due
to its multiple applications in the real world. MNIST and
Fashion-MNIST both describe grey-scale images of 10 classes
representing handwritten digits and clothes respectively.
Each dataset has 28x28 60,000 training images and 10,000
testing images; we use the latter for computing FID. Ima-
geNet [11] is a large dataset with around 14M images of a
256x256 resolution, dispatched into more than 21, 000 classes.
ImageNet classification challenges usually use a subset of
this dataset [40, 42]. We use a subset of ImageNet with 100K
images, distributed among 200 classes with 500 samples per
class. Reducing the dataset only allows for faster conver-
gence. Unless otherwise stated, we use Fashion-MNIST as a
default dataset throughout our evaluation.

Non-iidness. In all the considered datasets, the data is bal-
anced: the average number of samples per class is almost the
same in all classes. To our knowledge, there is no publicly
available dataset with inherent non-iidness or imbalanced
data. We designed a distribution engine to emulate imbal-
anced and skewed distributions of data among devices.

Our engine accepts two input parameters: max_class and
max_samples. The former defines the maximum number
of classes any device can have, and the latter defines the
maximum number of samples per class on any device. For
each device, the engine generates a random number r_c €
[1, %W], where i is the index of the device, i.e.,i € [1,n]
and n is the total number of devices. r_c defines the number
of classes this device will have. Then, the engine randomly
samples r_c classes from the dataset. Similarly, the engine
(at each device) generates a random number r_s for each se-
lected class with r_s € [1, min(i?, w)]. Finally, the
engine randomly samples r_s samples for each selected class
from the dataset. Note that the engine generates a different
value for r_s per class. Using this engine, we managed to
emulate several cases of data imbalance and non-iid distri-
bution of data among devices, including the typical non-iid
workloads reported before in the literature [16, 32, 41, 52].

GAN architecture. Without loss of generality, we evaluate
FEGAN with two popular GAN architectures. We believe
our work can be ported to any GAN architecture, as FEGAN
is GAN-internals agnostic. The two experimented architec-
tures are: Least Squares Generative Adversarial Networks
(LSGAN) [31] for the MNIST and Fashion-MNIST datasets,
and a Deep Convolutional Generative Adversarial Network
(DCGAN) [37] for the ImageNet dataset. The generator net-
work comprises of one fully-connected layer followed by
three convolutional layers with a Leaky ReLU activation
function each and a tanh activation function for the output.
The discriminator network is composed of four convolutional
layers with Leaky ReLU activation function followed by one
fully-connected layer with a Sigmoid activation function at
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the output. The number of input, output, and hidden neurons
per layer depends on the input image size. Our experiments
show that both networks do not require more than 3 MB of
memory for the storage of their architecture and weights.

Hyper-parameters. Unless otherwise stated, we use the fol-
lowing hyper-parameter values in our experiments. We set
E, the local number of iterations per each device, to 30, C,
the fraction of devices chosen each round (by the server)
for the training, to 0.025, B, the batch size, to 50, and FID
batch size, the number of samples used to calculate the FID,
to 10,000. We discuss the effect of changing the values of E
and C in Section 6. We monitor the progress of FID every
1000 training iterations (not to confuse with epochs nor with
FL rounds). We use the Adam optimizer [20] for both the
generator and the discriminator with an initial learning rate
of 0.0002 and values for betas 0.5 and 0.999. As instructed in
their original papers, we use Mean Square Error (MSE) loss
function with LSGAN [31] and Binary Cross-Entropy (BCE)
with DCGAN [37] for both networks.

Baselines. We compare FEGAN against three competitors:

1. Centralized GAN. We use a centralized GAN as a base-
line to be able to compare the resulting FID with FEGAN as
well as to illustrate the throughput gain of distributing the
computation. We train a GAN on a single machine with two
GPUs. The hyper-parameters are set to the same value as
FEGAN, including the batch size for fairness.

2. Parameter Server-based GAN. Existing approaches to dis-
tribute GANs rely on the parameter server architecture [26]

to handle the distributed training [16, 52]. Note that the eval-
uation of such systems (in their original papers) has been
conducted by emulation. Since none of these systems is open-
sourced yet and rely on the same architecture (with minor
nuances), we picked MD-GAN [16] as a representative of
this class of systems. Like FEGAN, MD-GAN assumes that
data on devices is never shared with any other machine. We
implemented MD-GAN in our distributed framework using
the same networking abstractions, models and datasets that
we used in FEGAN. For the sake of fairness, we put Ten-
sors on GPUs and handle communication using the same
GPU-to-GPU abstractions. We also use the best values for
the hyper-parameters as instructed by the authors in their
original paper [16].

3. Federated Averaging (FL-vANILLA). We compare to a straw-
man FL setup, where discriminators and generators remain
on devices. Such devices send error gradient updates to a
central server that hosts the up-to-date generator and dis-
criminator. This constitutes the FL baseline, inspired by the
FedAvg algorithm [32], we coin FL-VANILLA.

FEGAN configurations. We report on all the variants of
our FEGAN system with all combinations of balanced sam-
pling and KL weighting techniques being used or not. We
abbreviate sampling with s and weighting with w in the

figures with 0 means disabled and 1 means enabled. For ex-
ample, s = 1,w = 0 denotes FEGAN deployment that uses
our balanced sampling scheme but not the weighting one.
This is completely independent of the distribution of data
among devices. Note that setting s = 0, w = 0 is equivalent
to employing FL-VANILLA.

5 FEGAN Convergence

In this section, we show the quality of the data generated
by FEGAN, measured by FID, as well as the convergence
behavior compared to other baselines in both iid data and
non-iid data contexts.
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Figure 4. Convergence of FEGAN compared to the Central-
ized approach and MD-GAN. We distributed the Fashion-
MNIST dataset identically and independently (iid) on 80 de-
vices for the distributed deployments. FID metric: the lower,
the better the generated samples.

5.1 Convergence of FEGAN in iid Settings

Comparison with competitors. We run a head-to-head com-
parison with a centralized GAN and MD-GAN w.r.t. conver-
gence performance over time and the number of training
epochs. In this experiment, we distribute data identically
and independently (iid) over devices in the distributed de-
ployments, namely MD-GAN and FEGAN. As we wanted
to focus on the benefit obtained from FEGAN architecture,
namely the fact that both the generator and the discrimi-
nator are distributed, we voluntarily disable the weighting
and sampling schemes in this experiment (s = 0, w = 0). In-
deed, distribution leads to communication overhead, which
FEGAN minimizes (by the co-location of the generator with
the discriminator on all devices in addition to sampling a
limited number of devices for training in each round).
Results displayed on Figure 4 clearly show that FEGAN
significantly outperforms both competitors. In both figures,
we observe that FEGAN converges to an FID value of around
50 where the other approaches converge to an FID value of
around 100. Compared to the centralized deployment, FE-
GAN achieves a better FID in less time (Figure 4a). At the
first glance, this result looks counter-intuitive. Yet, this is
due to the fact that in FEGAN, the server aggregates updates
based on more data samples (i.e., collected from more de-
vices), highlighting the advantage of distributing the training



process.” This also gives FEGAN a more diverse view of the
dataset and ensures a better convergence than in the central-
ized case [49, 54]. This is consistent with the observations
reported in [12, 17] while comparing a centralized approach
to a distributed one. Since MD-GAN relies on a single gener-
ator at the server, it fails to benefit from the data diversity on
multiple devices and hence, achieves a performance similar
to the centralized approach. FEGAN achieves a much faster
convergence because the server communicates only with a
fraction of devices in each round as opposed to MD-GAN
where it communicates with all of them; this enables FEGAN
to achieve faster iterations.

The results depicted on Figure 4b show that FEGAN con-
sistently outperforms MD-GAN. However, the centralized
approach converges faster than the distributed approaches in
the first few hundreds of epochs. After that, FEGAN achieves
a better FID value. This is due to the fact that in the first
few epochs, FEGAN contacts different devices per round and
hence, the server aggregates updates from different data,
trying to adapt both networks (the generator and the dis-
criminator) to this data, which leads to the observed slow
start. In the subsequent iterations, as the weights of both net-
works become more stable, FEGAN leads to better-generated
data (and hence, a better FID).
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Figure 5. Convergence of a few FEGAN configurations in a
distributed setup with the Fashion-MNIST dataset distributed
identically and independently (iid) on 80 devices.

FEGAN configurations. Results previously demonstrated
the relevance of FEGAN (with s = 0, w = 0) in an iid setup
over existing distributed and centralized approaches. We
now assess the impact of the core mechanisms of FEGAN,
namely the impact of s and w in an iid setting.

Figure 5 displays the results of different FEGAN deploy-
ments with all combinations of enabling and disabling the
balanced sampling and the KL weighting schemes. We ob-
serve that in terms of convergence speed (both in terms of
time and training epochs) they perform approximately the
same. FEGAN (with s = 1, w = 1) performs slightly better
and provides quickly a smaller FID.

Those results demonstrate that, while we aimed at sustain-
ing non-iid data distributions when designing our system,
FEGAN is equally good in iid setups. This makes FEGAN an
excellent system across data distributions.

Note that we could not arbitrarily increase the training batch size on the
centralized setup, that is prone to memory constraints.
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Figure 6. Convergence of FEGAN in a distributed setup with
MNIST; data not distributed identically and independently
(non-iid) on devices.
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Figure 7. Convergence of FEGAN in a distributed setup
with Fashion-MNIST; data not distributed identically and
independently (non-iid) on devices.

5.2 Convergence in a Non-iid Context

In this section, we extensively evaluate the performance of
FEGAN in a non-iid setup. To this end, we compare FEGAN
in its full-fledged version (with s = 1, w = 1) to the FEGAN
version where the sampling and the weighting schemes have
been disabled (i.e., the FL-vANILLA competitor). We run these
experiments in three different datasets and different data
distributions. We control the data distribution (and hence,
the degree of non-iidness and data imbalance) using the data
distribution engine described in Section 4. Figures 6, 7, and 8
show the results on the MNIST, Fashion-MNIST, and Ima-
geNet datasets respectively, each in two settings where we
vary the maximum number of classes and samples per de-
vice. The first two datasets are used to show the effectiveness
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Figure 8. Convergence of FEGAN in a distributed setup with
ImageNet; data not distributed identically and independently
(non-iid) on devices.

of FEGAN on well-known baseline datasets, while the Im-
ageNet experiment shows the performance of FEGAN on
a large-scale dataset. For space constraints and as they ex-
hibit similar shapes, we discuss the three figures collectively,
highlighting the main performance gains of FEGAN.

Faster model updates. Our first observation is that FEGAN
runs epochs faster, i.e., leading to a faster convergence, than
FL-vaNILLA®. The balanced sampling (as compared to random
sampling in FL-vaniLLA) of FEGAN favors devices that were
not visited in previous rounds and hence, it has a higher
probability of sweeping over the whole dataset (distributed
among devices) faster than FL-vaNiLLA. We quantify this
throughput gain to 1.27 — 1.8x with MNIST, 1.57 — 1.7X with
Fashion-MNIST and 1.9 — 2.13x with ImageNet. We discuss
this observation in detail in Section 6.

Better FID. Not only FEGAN achieves faster epochs in all
datasets but we also observe that it converges to a better FID
value, compared to FL-VANILLA, after training for the same
number of epochs. This is due to both our balanced sampling
and KL weighting schemes. The fact that the server adjusts
the weight of each device depending on its data distribu-
tion helps achieve a better generation of data (and hence, a
lower value for FID), as opposed to FL-vaNILLA that consid-
ers devices equal regardless of the number of classes and the
number of samples per class they hold. This, in turn, enables
the server of FEGAN to consider faster a diverse set of data
with a higher probability, contributing to learning faster the
global data distribution.

Convergence gain. To demonstrate the superiority of FE-
GAN over FL-VANILLA, we compare the time required to

Note that we run both systems for the same amount of time per experiment;
that is why the lines in all sub-figures b are balanced, unlike sub-figures a.

achieve a given FID value (usually the best value achieved
by FL-vaniLLA) and call it convergence gain. Results show
that the convergence gain of FEGAN over FL-VANILLA is
1.27 — 1.57%, 1.71 — 3% and 2.75 — 3.67X, when training
MNIST, Fashion-MNIST, and ImageNet respectively. Beyond
the ultimate FID value, a system can achieve eventually, the
convergence gain is an important end-metric for ML practi-
tioners. Such a metric combines the system’s performance
aspect (e.g., throughput or latency) and the ML algorithm
performance aspect (i.e., convergence over training epochs).

The less uniform, the more effective FEGAN is. When
comparing the first and second rows of Figures 6 and 7, we
observe that the performance gap between FEGAN and FL-
VANILLA is larger for lower values of max_class. In other
words, the effectiveness of FEGAN is even clearer when each
device owns only a few classes from the whole dataset. This
demonstrates the ability of FEGAN to account for a higher
degree of data imbalance over devices; we believe the latter is
a realistic scenario as we do not expect that all classes would
be represented on distributed devices. Figures 8c and 8d
show a real-world scenario, where each device has at most
50 samples from any of the 200 classes of ImageNet. Results
from both figures show that FEGAN converges faster than
FL-vaNILLA in terms of both the number of rounds and time.
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Figure 9. Convergence of FEGAN with non-iid Fashion-
MNIST data distributed on 80 devices, showing all cases
of enabling and disabling weighting and sampling schemes.

5.3 Relative Importance of Sampling & Weighting

We evaluate the relative impact of activating each mech-
anism in all datasets. The results for Fashion-MNIST are
depicted in Figure 9. We observe that while using only one
mechanism is enough for FEGAN to achieve a lower FID
than FL-vaNILLA (wWhere using sampling alone is slightly
better than using weighting alone), using both mechanisms
achieves the lowest FID.

Preventing mode collapse. Figure 10 shows the KL-divergence

of the data distribution seen by the server (over FL rounds)
compared to the real data distribution. We compare balanced
sampling (used by FEGAN) to random sampling (used by FL
with FedAvg [21]) and the iid case (when data is distributed
identically on all devices). On the one hand, the figure shows
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Figure 10. KL-divergence of the real distribution from the
distribution seen by the centralized server. The smaller the
KL-divergence, the lower the probability of mode collapse.

that using random sampling with non—iid data will let the
server see a diverging distribution compared to the real dis-
tribution of data. On the other hand, balanced sampling of
non—iid data allows the server to see almost—exact distri-
bution of data (compared to the optimal case, i.e., with iid
data). As demonstrated by previous work [28], the smaller
the KL-divergence, the less the probability of experiencing
mode collapse; FEGAN then shows resilience in that respect.
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Figure 11. The co-location of both networks on all nodes
avoids yielding a powerful discriminator (as in MD-GAN),
preventing the problem of vanishing gradients to happen.

Preventing vanishing gradients. FEGAN co-locates the
discriminator with the generator on all devices so that the
training of both networks can happen simultaneously in
all training iterations, allowing both networks to have the
same power in confronting each other. To demonstrate the
efficiency of this approach, we run an experiment in which
the discriminator is trained in all iterations while the gen-
erator is trained only once each E iterations. Such a design
reflects that of having one generator in the central server and
multiple discriminators on the devices, which was proposed
before, e.g., in [5, 44]. Figure 11 shows that the latter design
creates a dominant discriminator that can always defeat the
generator, hindering the latter from generating output data
that looks real. Yet, the co—location of both networks on all
devices (applied by FEGAN) allows the generator to be pow-
erful enough to generate such data, as demonstrated by the
lower FID values. FEGAN thus clearly avoids that problem.

6 FEGAN System Performance

This section reports the performance of FEGAN with regards
to baselines. The results being similar across datasets, we
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Figure 13. The impact of the values of E and C (60 devices).

only present the results obtained with the Fashion-MNIST
dataset unless stated otherwise.

Throughput. We measure the system’s throughput as the
number of epochs achieved per second. Figure 12 plots the
scaling of the throughput of both MD-GAN and FEGAN with
the number of devices. We observe a stable throughput for
MD-GAN, which is almost non-sensitive to an increasing
number of devices. This is because the single generator on
the server has a bounded processing capacity regardless of
the number of devices interacting with it. Results show that
FEGAN however exhibits a close to perfect scaling. The ob-
served throughput increases linearly with the number of
devices, fully leveraging the potential of distributing the
training. With 176 devices, FEGAN exhibits a 5% throughput
increase over MD-GAN. Note that such scalability also de-
pends on the chosen values for E and C. For instance, we do
not expect FEGAN to scale with C = 1, E = 1 as it will incur
the same amount of communication as with MD-GAN in this
case. Hence, the values of C and E largely control whether
the bottleneck is the communication or the computation.
Figure 13 presents the results obtained when varying the
values of parameters E, the local number of iterations per-
formed on each device in one FL round, and C, the fraction
of devices chosen by the server in each round, for FEGAN
and MD-GAN (as a baseline) in a 60—-device configuration.
We observe that the performances of FEGAN are signif-
icantly better in several configurations and in any case at
least as good as the ones of MD-GAN, but in the C = 2/15,
E = 60 configuration. We believe this latter issue is a pure
implementation issue, which we detail in the following. On
the one hand, since the server in MD-GAN only averages the
devices’ updates, we use the reduce abstraction in PyTorch
which has an efficient GPU-to-GPU NCCL [35] implementa-
tion. On the other hand, we use the gather abstraction with
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FEGAN to enable KL weighting, i.e., the server first gathers
the updates and then applies a weighted sum on them. Such
a communication abstraction is not supported on GPUs (to—
date in PyTorch) and hence, the models are copied to the CPU
memory first, leading to slower end-to-end communication.

From the results, we observe that lower values of C give
a significant advantage to FEGAN, with one configuration
(C =1/30, E = 60) even performing close to 4 times faster
than the MD-GAN configuration. This is explained by the
communication overhead between the server and the de-
vices: the lower the value of C, the lower the number of
devices chosen per round and hence, the lower the com-
munication overhead. Since the communication overhead
is the main bottleneck in distributed machine learning ap-
plications in general [18, 47], reducing the communication
drastically affects the system throughput, without impacting
the convergence as demonstrated in the previous section.

Figure 13 also shows a positive correlation between the
value of E and the throughput. The higher the value of E,
the more local iterations per device per round, the lower the
communication between the server and the devices per unit
time and hence, the higher the system’s throughput. Note
that while studying the impact of the values of C and E gives
us some indication, choosing the best values for C and E
remains data and model-dependent.

Network bandwidth. Figure 14 shows the impact of FE-
GAN’s balanced sampling on the data diversity (number of
samples per class) observed by the server as a function of
the number of FL rounds. We observe that balanced sampling
significantly impacts the training time: it takes FEGAN 10
rounds to come across 500 samples against 10x this figure
when random sampling is applied.

The effectiveness of balanced sampling directly translates
into network bandwidth gain. Effectively, random sampling
has a higher probability to visit the same data batch twice
consuming unnecessary bandwidth. Table 1 summarizes the
gains in terms of time and communication. This confirms
the results displayed in Figure 14. Based on these numbers,
random sampling requires around 1.5X more bandwidth,
compared to our balanced sampling, per epoch.
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Setup 5-3000 | 10 - 2000 | 20 - 3000 | 40 - 4000

FL-vANILLA | 3596.9s | 3733.3s | 4825.7s | 3815.5s

FEGAN 2441.4s | 2379.9s | 3031.7s | 2560.2s
Gain 1.47X 1.57X 1.59% 1.49%

Table 1. Time to finish 200 epochs by FEGAN and FL-
VANILLA. With the former, we use balanced sampling while
with the latter, we use random sampling. The given two num-
bers in the first row represent max_class and max_samples
respectively. The gain in time to finish one epoch can be
also viewed as a gain in consumed bandwidth over random
sampling for not looking at diverse data batches.
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Figure 16. Convergence of FEGAN in the presence of weak
devices in terms of memory or processing power. FEGAN is
adaptive to heterogeneous devices. (ImageNet, 60 devices)

Moreover, as Figure 15 shows, devices in FEGAN consume
less bandwidth than with MD-GAN as each device is selected
only once every few FL rounds as opposed to MD-GAN in
which all devices train the model each round. In this figure,
each device is sampled less than 10 times every 200 seconds.

Heterogeneous devices. Figure 16 shows an experiment with
a set of devices, some of them with limited memory or pro-
cessing power (we denote those as weak devices). Based on
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FEGAN’s design, such devices are assigned smaller batch
sizes (to respect the memory constraints) or less number
of local iterations (to respect the limited processing power).
In this experiment, weak devices are assigned up to half
of the batch size and half of the local number of iterations.
The figure also shows the effect of having different ratios of
weak devices compared to the total number of devices (in
the range of 10-90%). All figures show that the presence of
weak devices almost does not affect FEGAN’s convergence.
This shows the efficiency and the practicality of the adaptive
methods included in the design of FEGAN.

Tolerating server crashes. As the central server failure is
more critical than the devices’ failures, we focus here on
the former case. Figure 17 shows an experiment in which
we crash the central server after 500 seconds from the be-
ginning of the experiment. In such a case, a backup server
loads the latest stored checkpoint, announces to the devices
that it is the new primary, and continues the training nor-
mally from that checkpoint. The figure shows that the server
failure/crash does not cause troubles (e.g., big stalls) to the
training process, which continues normally after the crash.

7 Related Work

Few proposals suggested distributing GANs computation
on multiple machines. MD-GAN [16] aims at reducing the
computation on workers by relying on a single generator,
hosted on the central server of the parameter server model.
In this setup, every worker hosts a discriminator. Such an
architecture then breaks the usual generator-discriminator
couple, by setting up a 1-to-n game. The discriminators per-
form local learning steps on their datasets (that are never
shared with other machines) and compute the error feedback
on the generated samples they are given by the server. Dis-
criminators are periodically swapped between the workers
in a peer-to-peer fashion, in order to avoid overfitting the lo-
cal datasets. MD-GAN is built with scalability to few tens of
workers in mind for targeting the within-datacenter learning
scheme; it also only targets the iid distribution of data.

A recent approach by Yonetani et al. [52] builds on the ar-
chitecture of MD-GAN, with also one single generator. They
aim at tackling some distribution skew on worker nodes
by proposing two independent unsupervised learning ap-
proaches: F2U and F2A. F2U is designed to fool the most
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forgiving discriminator for a given sample (as they judge the
sample real and close to the data they own). F2A adaptively
aggregates the feedback of discriminators by emphasizing
those from the more forgiving ones. Augenstein et al. [5]
proposed a similar federated GAN algorithm but also with
one generator at the server and multiple discriminators at
the devices. Such an algorithm focuses on the privacy of
users’ data on devices with the goal of synthesizing data
from similar distribution of real data for diagnosis. The scal-
ability of a single generator is here also at stake; we propose
instead to have multiple generator-discriminator couples.

Hardy et al. [15] proposed a fully decentralized, peer-to-
peer architecture for distributing GANs. The authors experi-
mented with GANs being gossiped and averaged between
independent devices. While acceptable on small datasets, the
performances are observed to be inferior to the baselines we
use to evaluate FEGAN with bigger datasets.

8 Concluding Remarks

We evaluated FEGAN extensively, and here is our conclusion:
(i) its careful design allows for scaling the training of GANs.
While MD-GAN provides better throughput at a small scale
(up to 32 devices), FEGAN then largely prevails, achieving
a linear improvement in throughput with the number of
devices (experimented with up to 176 devices) with even a
lower bandwidth consumption. This scaling does not come
at the cost of learning quality; at the opposite, we show lower
FID values in both iid data and non-iid data contexts. (ii) We
have shown that the proposed components of the FEGAN
systems can circumvent GAN specific issues that a vanilla
deployment of an FL-based scheme can encounter. In that
respect, both the balanced sampling and the KL weighting
schemes are instrumental in the effectiveness of FEGAN.

Such components essentially utilize the skew information
released by the devices at the beginning of the learning,
with regards to their local data. The requirement for extra
information might constitute a privacy concern. Yet, recent
work has shown how to employ differential privacy with
training vanilla federated GANs [50]. Exploring approaches
that tolerate data imbalance while ensuring full privacy of
devices’ data is an avenue for future research.
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